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ABSTRACT

Introduction: Induced pluripotent stem (iPS) cell technology has transformed biomedical research.
New opportunities now exist to create new organoids, microtissues, and body-on-a-chip systems for

basic biology investigations and clinical translations.

Areas Covered: We discuss the utility of proteomics for attaining an unbiased view into protein expression
changes during iPS cell differentiation, cell maturation, and tissue generation. The ability to discover cell-
type specific protein markers during the differentiation and maturation of iPS-derived cells has led to new
strategies to improve cell production yield and fidelity. In parallel, proteomic characterization of iPS-derived
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organoids is helping to realize the goal of bridging in vitro and in vivo systems.
Expert Opinions: We discuss some current challenges of proteomics in iPS cell research and future
directions, including the integration of proteomic and transcriptomic data for systems-level analysis.

1. Introduction

The discovery of iPS cells in mice and in humans has had
a significant impact on biomedical research [1,2]. The ability to
reprogram mature somatic cells from adult donors back to plur-
ipotency, then in turn direct their differentiation into different
adult-like terminally differentiated cells in vitro, has enabled
a virtually unlimited source of otherwise inaccessible cells such
as human cardiomyocytes and neurons in the laboratory.
Compared to embryonic stem (ES) cells, iPS cells circumvent
critical ethical issues associated with cell procurement, and more-
over, capture the genetic background of the donors to allow
personalized study of disease mechanisms and drug responses
in a dish. Many protocols have been established to promote the
reprogramming, fidelity, and maintenance of pluripotency in iPS
cell lines [3-5], whereas advances continue to be made that allow
the differentiation from iPS cells of an ever-increasing variety of
terminally differentiated cell types that compose the adult body.
As a result, iPS cells are now widely used in biomedical research
and to understand basic cell and developmental biology.
Enabling next-generation applications in disease modeling,
drug testing, and regenerative medicine will require another
leap, one that goes from producing individual cell types in
a dish toward producing complex microphysiological systems.
Rapid progress is under way to construct multi-lineage iPS-
derived cells forming into organoids, engineered tissues, and
body-on-a-chip systems [6,7]. The success of these endeavors
will require a fuller knowledge of how to orchestrate microtissues
from multiple cell types that can function in synchrony and
capture the complexity of regulation in higher organisms.
Despite progress, several limitations continue to pose significant
challenges to the use of iPS cells. iPS-derived cells often lack the

developmental and functional maturity of adult cells and resem-
ble fetal cells rather than their primary cell counterparts, which
impedes the clinical translation and cell therapy goals of mimick-
ing adult cell types. The purity and yield of many differentiation
protocols remain to be fully characterized, and the applicability
of protocols to diverse iPS cell lines from different genetic back-
ground remains to be established. Effective tissue engineering in
turn requires further understanding the modality of communica-
tion and crosstalk between cells.

Methods that can probe the total protein composition of cells
and tissues would be fundamental to overcoming these chal-
lenges. Proteins are the primary effectors of most biological
processes and confer structure and function to cells and tissues.
Although protein abundance is moderately correlated to the
transcriptome of a sample [8-10], many post-transcriptional
and post-translational regulations exist that uncouple mRNA
and protein level, including the differential translation rates of
transcripts and degradation rates of proteins. This non-
correlation has important implications for accurately assessing
the across-condition functional changes from transcript data
(e.g. upon perturbation or across individuals in a population).
Proteomics techniques, spanning both mass spectrometry (MS)
and non-MS approaches, provide a direct readout of protein
abundance (Box 1). Moreover, coupled to protein enrichment
and isolation strategies, proteomics can reveal the spatial distri-
bution (e.g. cell surface localized) of proteins and paint a more
comprehensive picture of cell-type transitions that may be
missed in gene and/or transcript analysis. Proteomics studies
that directly measure the abundance of proteins therefore pro-
vide unique information into the identity and physiology of iPS
cells and their derivatives.
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Article highlights

¢ Opportunities now exist to create organoids and microphysiological
systems from human induced pluripotent stem (iPS) cells as the next
generation of biomedical reesarch models.

o Application of proteomics techniques can help advance iPS models
by providing readouts of cell differentiation yield, purity, and
maturity.

¢ Improvements to both mass spectrometry and non-mass spectro-
metry methods have drastically improved the proteomic character-
ization of iPS cell models.

o Continued development of secretome and surfaceome profiling tech-
niques will avail characterization of cell identity and crosstalk at the
protein level.

Box 1. Non-MS based proteomics methods

MS remains the most versatile method for the unbiased identification
and quantification of proteins. Non-MS approaches are also in use,
including affinity-based platforms like reverse phase protein array
(RPPA) [101], SomaScan [102], and Olink [103], which can be used
separately or in conjunction [104] to quantify hundreds to thousands
of pre-determined protein targets in upward of thousands of samples.
These techniques achieve particularly impressive throughput and sensi-
tivity in clinical samples of liquid biopsies. However, a drawback is that
they typically target only commonly studied proteins in model organ-
isms and questions linger about the target specificity of some reagents
[105].

This review aims to highlight the potential and utility of
proteomics toward the continued advances of iPS technol-
ogies. Section 2 gives a much-abbreviated overview of some
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Classic Proteomics Applications

common proteomics approaches and considerations.
Section 3 reviews some ‘classic’ applications of understand-
ing iPS cell reprogramming and pluripotency, whereas
Section 4 and 5 focus on the use of proteomics toward
the ongoing goals of improving the production of mature
cells and organoids to enable advanced applications
(Figure 1). To limit scope, we largely omit studies that
compare protein abundance profiles to study diseases,
which have been reviewed comprehensively elsewhere
[11,12].

2. Brief overview of proteomics methods and
analysis

Comprehensive tutorials of MS-based proteomics methods
have been written elsewhere [13,14]. We give here only
a brief commentary on some recent improvements that
may be broadly beneficial for cell analysis. Firstly, sample
preparation for proteomics has continued to advance, and
a renewed attention is driven by the goal of
analyzing minute samples such as from single organoids
or single cells. Clearly, sample preparation is crucial to
acquiring accurate data and supporting meaningful inter-
pretation. The diversity of sample types and their procure-
ment (e.g. single cells, tissues, homogenate, conditioned
media) makes it necessary to adopt protocols specific to
a sample type that produces downstream-compatible (e.g.
detergent and salt free) analytes while having sufficient
power to extract and solubilize proteins. Workhorse meth-
ods like filter aided sample preparation (FASP) [15] have
been joined by approaches such as single-pot, solid-phase-
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Figure 1. Proteomics applications to enable next-generation iPS cell applications.



enhanced sample preparation (SP3) [16] which uses hydro-
philic interaction to purify and recover peptide samples. To
enable single-cell analysis, one-step, one-pot protocols are
being developed that aim to reduce loss of minute quan-
tities of proteins [17,18]. The automation or semi-
automation of protein chemistry steps using liquid hand-
ling robots is becoming standard, with the aim of reducing
variability and increasing throughput. Robot-assisted work-
flows have been applied to protein digestion of bulk or
single-cell samples [19-21], new protein synthesis capture
[22,23], surface protein capture [24], and other protocols.
Second, there has been increasing attention placed not
just on the identification of a large number of proteins but
also on quantifying protein abundance with high through-
put and accuracy, using both label-free and isotope-
labeled approaches. Labeled analysis such as using isobaric
tags (e.g. tandem mass tags) has become commonplace for
quantifying changes in protein abundance, and allows
multiplexing of multiple samples (up to 18-plex from tan-
dem mass tags, and up to 54 or more from ‘hyperplexing’
strategies) within a single MS experiment. This has the
effect of improving the quantitative accuracy and through-
put of MS analysis for profiling of complex cellular pro-
teomes while reducing some of the data missingness that
can come from the stochastic nature of data-dependent
acquisition (DDA) analysis [25]. This benefits, however, only
extends to a certain number of samples. When samples
number in the hundred and require multiple blocks of
isobaric tags to be bridged from one another, the problem
of missing data (label quantity acquired in one block but
not another) returns. Hence, a parallel trend has been the
increasing adoption of data independent acquisition (DIA)
mode of bottom-up MS [26]. DIA differs from DDA in how
MS2 spectra containing peptide sequence information are
generated. In DDA, the mass spectrometer selects
a specific precursor ion in the MS1 scan to generate MS2
spectra and gather sequence information. This selection
process is susceptible to run-to-run differences, especially
when high abundance peptides mask low abundance pep-
tides from being selected. By contrast, DIA MS uses pre-
defined mass windows to isolate multiple precursors and
fragment all precursors within the mass window at the
same time. This expands the number of product ions that
can be monitored and reduces the missing data issues of
DDA, allowing higher sensitivity and reproducibility. After
acquisition, peptides can then be identified from the
acquired spectra using search engines, such as DIA-NN
[27] and FragPipe [28] that can consider multiple
sequences in one spectrum with the aid of spectral
libraries and quantified from precursor ions in MS1.
Statistical analysis of peptide quantity can then be per-
formed to determine differential protein abundances
across sample using bioinformatics tools and packages,
including MSStats [29], which is designed to account for
MS runs that involve multiple biological or technical repli-
cates as well as unbalanced designs that might have an
unequal number of replicates in the sample mixture.
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3. Applications of proteomics in iPS cell
characterization

3.1. Comparison of iPS and ES cells

Early applications compared iPS and ES cells to assess how
faithfully the former recapitulate the properties of natural
pluripotent cells. Although iPS cells are postulated to carry
largely the same differentiation potential as ES cells, at least in
mice, their actual differentiation efficiency is often reported to
be lower than ES cells, suggesting some minor differences
between the two cell types. Proteomics experiments that
compare iPS and ES cells have found about 50 to 300 proteins
significantly different [30,31]. MS comparison that focused on
membrane proteomics also corroborated minor differences,
with proteins including amino acid transporters and vesicular
trafficking proteins to be differentially expressed [32], whereas
proteins related to focal adhesion processes may be incom-
pletely repressed in iPS cells from the original cell type [33].
These differences may be attributable to the persistence of
epigenetic memories, as iPS cells derived from different types
of adult cells retain some signatures of their originating cell
types [34]. However, other factors including genetic differ-
ences and laboratory culture conditions cannot be ruled out,
and overall these differences may be relatively minor with
~98% proteins not significantly different between iPS and ES
cells [30].

3.2. Identification of proteins involved in self-renewal
and pluripotency

After it was known that OSKM can be used to reprogram
somatic cells into iPS cells, many mechanistic details of the
reprogramming steps remained incompletely understood [2].
Understanding the cellular pathways involved and their syner-
gistic interaction became an important goal for optimizing
reprogramming [35,36]. The induction of pluripotency expect-
edly led to huge changes in proteome in iPS vs. precursor cells
[30]. Like many other techniques, proteomics has been
employed to analyze the regulatory factors that control plur-
ipotency and differentiation [37]. In one study [38],
a simultaneous measurement of protein expression and ther-
mal stability changes is used to identify key differences
between iPS cells and their progeny embryoid bodies. From
this combined analysis using tandem mass tag multiplexing
and high-pH reversed phase peptide fractionation, it was
found that ribosomal protein expression may play
a triggering role in iPS differentiation, where an increase in
ribosomal protein thermal stability is reflective of a change in
ribosomal structure. Notably, iPS cells show lower translation
than other cell types, suggesting an emphasis of energy usage
on maintenance of pluripotency over protein synthesis.
Moreover, a ribosomal associated protein SBDS is found to
be deficient in iPS cells to hamper protein synthesis and may
help maintain pluripotency, suggesting a potential avenue for
controlling pluripotency regulation and exit. In another study,
a label-free proteomics screen using DDA MS analysis found
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that repressive H3K9 marks impair reprogramming, and that
active chromatin markers occur late in the pluripotency tra-
jectory from pre-iPS to iPS cells [39]. Quantification of post-
translational modifications of histones revealed a varied active
chromatin character between iPS cells and differentiated cell
types such as fibroblasts as well as pre-iPS cells, with
decreased heterochromatin protein-1y (Cbx3) and H3K9
methylation in pluripotent cells.

Another study by Hansson et al. [37] leveraged in-depth
quantitative proteomics to track the changes in the cellular
proteome during somatic cell reprogramming. To do so, the
authors extracted proteins at different time points during the
process of reprogramming secondary mouse embryonic fibro-
blasts, followed by digesting and labeling the peptides with
stable isotopes. Because of the complexity of the samples, to
achieve greater profiling depth, the authors performed deep
fractionation and identified 7,918 unique protein groups,
among which 5,601 proteins were quantified across all time-
points. Many transcriptional regulators and chromatin modi-
fiers were identified that have been implicated in maintaining
pluripotency. Additionally, the observation of global proteome
changes across several time points enabled the identification
of a proteome shift or resetting between the initial and later
phases of reprogramming. Identification of such proteome
dynamics enabled a better understanding of directional pro-
tein expression changes to achieve successful reprogramming.

3.3. Characterization of iPS cell quality and variability

Proteomics has been applied toward the quality assurance of
iPS lines. One study discovered that X chromosome inactiva-
tion erosion leads to changes in the iPS cell proteome during
culture and contributes to RNA-protein non-correlation [40].
Another study used proteomics to develop of a marker panel
comprising 22 proteins that can be used to ascertain cell
quality and pluripotency [41]. Comparing proteins in initial
vs. intentionally prolonged culturing led to the detection of
proteins that are indicated during initial growth, differentia-
tion, as well as at later formation of embryoid bodies [41]. The
establishment of these markers provides a method for mon-
itoring the physiological state of iPS cells, which have implica-
tions in quality assurance during the development of cell-
based therapies.

With scaled-up cell production, very large panels of mul-
tiple iPS lines can be compared with each other to under-
stand the variability of intra-clonal, inter-clonal, and inter-
donor effects on iPS cell proteomes. Such heterogeneity can
lead to differences in iPS-derived cells that would be impor-
tant to understand [42], whereas inter-donor variability can
also be used as a natural model to understand genetic
architectures. Using HILIC chromatography and spectral
library generation through DDA/DIA MS workflow proteo-
mics, a study by Brenes et al. in the HipSci consortium [43]
evaluated the differential protein expression of 217 lines of
iPS cells from 163 donors across various molecular pathways
and determined that iPS lines expressing lower BMP4 sig-
naling had higher pluripotent capacity and lesser vulner-
ability to apoptotic signaling. A report from the same
consortium [44] measured protein pluripotency markers in

307 lines and observed the sources of genotypic and phe-
notypic variation in iPS cells and developed a map of reg-
ulatory variants and pluripotency markers that can be used
to optimally generate pluripotent cell lines. Finally, combin-
ing the proteome profiles of 202 iPS cell lines and inte-
grated with genome sequence data, Mirauta et al. used
the iPS cell panel to discover protein quantitative trait loci
(pQTL) that cannot be detected at the mRNA level [45].

The National Institute of Health (NIH) also developed the
NeuroLINCS initiative as a part of its Library of Integrated
Network-based Cellular Signatures (LINCS) program to study
human iPS cells and differentiated neuronal cultures from
healthy donors, as well as spinal muscular atrophy and
amyotrophic lateral sclerosis patients [46]. DIA MS was
used to quantify around 3,000 proteins from multiple iPS
lines to identify pluripotency markers. The proteomics data
generated was further validated through the analysis of cell
line and culture protocol assessments. Coefficient of varia-
tion analyses was used to identify the outliers for both
technical and biological replicates, which were excluded
from biological analyses to reduce experimental variability.
This in-depth proteomic profiling enables a method to
determine pluripotency and evaluate the stability of differ-
entiation protocols across lines.

4. Applications of proteomics toward iPS-derived
cell differentiation and maturation

A critical utility for iPS cell models is the ability to direct the
differentiation of pluripotent cells toward the cell types of
interest. The studies of the surfaceome (i.e. plasma membrane)
[47-49] have found important applications. Cell surface pro-
teins often play a significant role as markers of iPS cell-
generated cellular sub types that allow the selective recogni-
tion and isolation of target cells, and the characterization of
cell fate transition events. The divergence of transcript and
protein information is especially pertinent here because
expressed transcripts, even if translated into proteins, may
not be translocated or discoverable on the cell surface [50].
Proteomics technologies that can capture cell surface proteins
provide a direct method to discover cell surface proteins. In
the past decade, emerging proteomics methods are allowing
this challenging ‘sub-proteome’ to be profiled with greater
depth and finesse (see Box 2)

4.1. Use of proteomics to improve cell differentiation
yield and fidelity

The development and optimization of directed differentiation
protocols benefit from cell-specific markers that can be reliably
detected in the target derived or transition cell types. Despite
advances, directed differentiation protocols typically produce
a mixture of cell types with significant cell to cell heterogeneity
[51,52]. For instance, even though protocols to derive cardio-
myocytes can yield 95% or greater proportion of cardiac tropo-
nin T expressing (cTnT+) cardiomyocytes, this canonical marker
masks the underlying heterogeneity where protocols may yield
a mixture of atrial, ventricular, pacemaker, and conductive cardi-
omyocytes, as well as fibroblast-like cells. This illustrates the



Box 2. Proteomics technologies to map the cell surface markers of iPS
models

Box 2.1 Analysis by cell surface capture MS

Traditional approaches to screen for cell surface proteins use immunor-
eagent panels to recognize the clusters of differentiation (CD) molecules.
However, other cell surface proteins exist that are not CD proteins. Most
cell surface proteins are heavily glycosylated. Wollscheid and colleagues
[106] demonstrated the cell surface capture (CSC) method, where hydra-
zide chemistry is used to specifically label cell surface glycans with biotin.
The glycosylated proteins can then be captured by streptavidin beads,
deglycosylated, and analyzed by mass spectrometry. This approach pro-
vides an unbiased approach to identify cell surface markers. A large-scale
application of CSC proteomics to 41 human cell types including iPS cell
lines led to an atlas of 1,492 cell surface proteins providing a resource for
understanding cell surface specificity [107]. CSC analysis of iPS cell
surfaces found over 500 surface proteins, with up to 80% of non-CD
molecules, highlighting the importance of unbiased discovery [49,50].

Box 2.2 Analysis by mass cytometry

Mass cytometry, or CyTOF, leverages the principles of both MS and flow
cytometry to characterize both the cell surface and intracellular proteins
of single cells through metal-conjugated antibodies [108]. Cells tagged
with these metal isotopes are then vaporized in the mass spectrometer
to give a readout of up to several dozens of parameters (i.e. proteins) on
each cell simultaneously, overcoming the laser channel limit of fluoro-
phore-based flow cytometry. CyTOF has been utilized to monitor pro-
teome changes during reprogramming [109] to identify various
pluripotency and cell cycle markers involved. Markers identified through
CyTOF are further analyzed using computational tools such as
PhenoGraph, diffusion mapping, and statistical correlation and dimen-
sional reduction by SPADE. Another study by Zunder et al. [110] eval-
uated several markers related to pluripotency, differentiation, cell-cycle
status, and cellular signaling through CyTOF and a time-resolved pro-
gression analysis. Cell samples collected across a time course were
prepared into a single-cell suspension that was multiplexed through
mass-tag cell barcoding prior to mass cytometry and further downstream
analysis was carried out by SPADE and FLOW-MAP algorithms. Common
reprogramming markers, such as Oct4, KIf4, CD54, were identified by the
algorithms, reflecting the utility of this method in facilitating a deeper
understanding of the molecular processes.

ongoing need to find additional unbiased markers for cell types
and subtypes, which can help improve differentiation quality,
decrease variability of batches, and compare differentiation pro-
tocols. Proteomics allows an unbiased discovery of cell surface
markers that reside selectively on target cell population, upon
which antibody-based methods (e.g. FACS) can be developed to
isolate these cells. Conversely, the identification of markers in
unwanted cell types (e.g. immature cells, fibroblasts) can be used
for negative selection. As such, multiple studies have aimed at
understanding proteomic changes during differentiation of iPS
and ES cells into cardiomyocytes [53], fibroblasts, neurons
[54,55], and insulin-producing cells [56].

4.1.1. Neuronal cells

In iPS-neurons, one study used automated sample preparation
and deep DIA MS to profile of over 8000 proteins in a single
experiment [55]. The results showed a longitudinal rise in
mature neuron (e.g. MAPT, MAP2) and synaptic (e.g. SNAP25,
SYN1) markers from 0 to 28 days of neuronal differentiation. In
another study, Urasawa et al. used DIA MS to examine the
temporal proteomic profiles of an iPS-derived neural stem cell
protocol [57], identifying a role of trophoblast glycoprotein
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(TPBG) in promoting neuronal differentiation over proliferative
cell fate. Another study used label-free DDA MS to characterize
novel biomarkers in the differentiation of iPS-derived neural
progenitor cells (NPC), comparing specific cytoplasmic, mem-
brane-specific, and synaptic proteins between in vitro and
in vivo models [58]. One study on neuronal differentiation
explored the cell surface N-glycoproteome of the neural pre-
cursor cells through cell surface capture technology.
Confirming and mapping the glycosylation sites of surface
proteins helped detect and confirm cell populations during
neuronal differentiation [59].

4.1.2. Cardiac cells
In a landmark study, Van Hoof et al. used quantitative MS to
identify the elastin microfibril interfacer 2 (EMILIN2) as a specific
marker in human ES-derived cardiomyocytes [60]. Another pio-
neer work used an antibody panel against 370 clusters of
differentiation (CD) protein targeting antibodies to identify
SIRPA (CD172a) as an iPS-derived cardiomyocyte cell surface
marker compared to undifferentiated iPS cells [61]. From this
information, the authors developed a cell sorting protocol for
SIRPA expressing cells that yielded 98%-+ troponin T+ cells from
heterogeneous populations. This method has since been widely
adopted for the production of iPS-derived cardiomyocytes
where purity is of particular concern, such as in scaling up cell
production for therapeutics development [62,63]. Markers of
cell subtypes (e.g. ventricular specific myocytes [64,65]) have
also been explored using unbiased cell surface protein screens.
The applicability of some of the cell surface markers has
been debated because they might not be universal across
protocols and species. It is important to note that a useful
marker will need to account not only for selectivity between
undifferentiated iPS cells and the targeted cells but should also
be verified in adult primary cells. Moreover, the marked popula-
tion should be depleted in intermediary cell types as well as
possible impure cell populations produced in the directed iPS
cell differentiation protocol. In a recent important study, Berg
Luecke et al. [53] produced a comprehensive cell surface pro-
teome map of markers across multiple iPS cell-generated cell
types with the aid of the computational analysis platform
CellSurfer. For instance, the mapping of cardiac cell surface
proteins through quantitative cell surface proteome profiling
of iPS-derived cardiomyocytes vs. other cell types. Notably, only
moderate overlap was found in iPS-derived cardiomyocytes
(51%) among the cell surface proteins found in primary cardi-
omyocytes, highlighting that current differentiation protocols
still have significant room for improvement. The authors further
compared cardiomyocytes with other cardiac cells, and found
LSMEM?2 to be a new cell surface cardiomyocyte marker that is
not found in primary cardiac fibroblasts, endothelial cells, and
coronary artery smooth muscle cells. This provides a new ave-
nue to assess the specificity and fidelity of iPS-derived cardio-
myocyte protocols.

4.2. Improvement of differentiated cell maturity

Besides the specificity of cell differentiation, the maturity of
the yielded derivative cells is of great importance. Many iPS-
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differentiated cell types lack the full structural and functional
maturity of primary adult cells and instead resemble their fetal
counterparts. This is in part because in vitro differentiation
protocols lack the important signaling cues and cellular niches
that occur in vivo and are furthermore attempting to recapi-
tulate lengthy in vivo development processes in gestation
within a relatively short time in the laboratory. This lack of
maturity has important ramification for disease modeling and
drug testing because diseases may manifest differently in
fetal-like and adult cell types. It has been shown that iPS-
derived cells have the potential to gain full maturity when
implanted into animals [66], suggesting they contain the
potential to become fully mature if given the right cues.
Hence, there has been interest in deriving methods that can
boost the maturation of iPS-derived cell types in vitro, includ-
ing culture media or matrix optimization, prolonged culturing,
and mechanical or electrical stimulation. These efforts require
accurate readouts of what constitutes a mature cell, which
would involve protein expression as well as cell surface pro-
teins. Proteomics has been used to compare iPS-derived cells
with perceived mature cells, which may come from iPS-
derived cells under prolonged culture, iPS-derived cells that
have been implanted into an in vivo niche, or bona fide adult
primary cell types. Such approaches have been applied to find
markers of maturation in iPS-derived hepatocytes [67-69],
cardiomyocytes [53,70-72], and pancreatic beta cells [56,73].

4.2.1. Erythroid cells

The proteomes of erythroid cells derived from iPS cells have
been compared with their adult erythroid cell counterparts,
with ~11% of proteins found to differed between the two cell
types by a level of 2-fold change or higher. However, greater
than 30 well-defined proteins were also found to be consistent
between the two cell types [74].

4.2.2. Hepatic cells

Human iPS-derived hepatocytes have strong utility for phar-
maceutical development and drug toxicity research, as liver
cells are the primary cell types that metabolize intake com-
pounds. Immature iPS-hepatocytes have limited applications,
partly because they have low expression of important liver
enzymes such as cytochrome P450s involved in drug metabo-
lism. Cell surface proteomics has identified SLC10A1, CLRN3,
and AADAC as highly co-expressed in late hepatocyte differ-
entiation. These findings allowed a proof-of-concept usage of
FACS to sort for SLAC10A1 positive cells in hepatocyte differ-
entiation protocols, which show greater similarity to primary
cells, including higher expression of liver signature genes such
as APOA2 [68]. Another study combined proteome, phospho-
proteome, and acetylome profiling to produce a temporal
profile of immature and mature hepatocyte-like cells from
iPS cells and identified metabolic switch including an increase
in ketogenesis, TCA cycle, and glyconeogenesis genes during
hepatocyte maturation, whereas most transcription factors
decreased on maturation [67]. In a separate study, Hurrell
et al. leveraged stable isotope labeled MS-based proteomics
to study the proteome of mature hepatocyte-like cells derived
from iPS cells during their differentiation over 40 days.

A maximum abundance of previously characterized hepato-
cyte-specific markers was reported between differentiation
days 30 and 32, indicating the formation of more mature cell
types toward the end of the differentiation process [69].

4.2.3. Cardiac cells

Immature iPS-derived cardiomyocytes do not achieve the
elongated morphology, resting membrane potential, and con-
tractile force of primary adult cardiomyocytes [66]. Protein
expression level changes longitudinally during the differentia-
tion of iPS- cardiomyocyte, which has been monitored using
isotope labeled shotgun proteomics [70]. Analysis of the pro-
teomic data revealed the differential expression of proteins
involved in synthesis, ubiquitination, and other metabolic
pathways during temporal changes from 32 to 60 days in the
maturation process, which may be targets for strategies to
make more mature cardiomyocytes.

A different study used MS to compare the proteomic pro-
files of early, mid, and late (15-90 days post-differentiation)
culture of iPS-cardiomyocytes, which continue to maturate in
culture following the initial cell-type specification. Poon et al.
[72] focused on cell surface markers that are preferentially
expressed in more mature cardiomyocytes and identified
CD36. This was used to develop a sorting protocol that speci-
fically enriches CD36M cells from heterogeneous mixture of
cells at 45 days post differentiation. Notably, the more mature
markers also contain higher mitochondrial DNA content, sug-
gesting they are metabolically more resembling adult cardio-
myocytes. Moreover, CD36" iPS-cardiomyocytes are more
sensitive to doxorubicin, a common anti-cancer anthracycline
that causes adverse cardiotoxicity in some patients and that is
thought to act by targeting mitochondria. Hence, the devel-
opment of proteomics screen allows the selection of cells that
could potentially be more useful for drug screening.

More recently, Berg Luecke et al. [53] further applied their
surfaceome approach to find iPS-cardiomyocyte maturation
stage markers, including CD36, LPL ASPN, CPBL, and VSIR; by
comparing iPS-cardiomyocytes that are in late culture (50+
days post differentiation) with early (10-16 days) and middle
(20-31 days) stage cells. In parallel, top-down proteomics cap-
able of resolving full-length proteoforms has also been lever-
aged to create accurate assays of maturation, including the
decreased phosphorylation of alpha-tropomyosin and MLC2a,
which can be seen in longer cell culture and also in primary
adult heart tissues [71].

4.2.4. Pancreatic cells

Immature iPS-derived pancreatic beta-like cells cannot recapi-
tulate the glucose-stimulated insulin secretion profile of pri-
mary human islet cells, which limits their utility for cell
therapy. Comparison of the proteomes of iPS-derived beta-
like cells and bona-fide human beta cells identified a number
of mature beta cell markers that are less expressed in iPS-
derived cells, including urocortin 3 [56]. Similarly, a study by
Haller et al. [73] leveraged label-free MS to identify markers at
each stage of pancreatic endocrine lineage commitment and
discovered new features of beta cell maturation following
in vivo transplantation that may guide future work to improve
glucose-mediated insulin secretion in these cells.



4.2.5. Adipose cells

Like other cell type, the validation of iPS-derived adipocytes
against their primary counterpart is an important goal that is
not fully met. In one study, Soontararak et al. compared iPS-
derived mesenchymal stem cells (iMSCs) to adipocyte derived
mesenchymal stem cells (adMSCs) to determine the effect of
both in treating inflammatory bowel mouse models [75].
Using flow cytometry, the authors found shared markers
between these cells, including Sca-1, CD29 and CD44 which
are all common MSC markers and concluded that both deriva-
tions of MSCs were sufficient to treat DSS-induced IBD in their
mouse model, especially when compared to the requirements
by the Mesenchymal and Tissue Stem Cell Committee of the
International Society for Cellular Therapy [76]. Though the
authors focused on using these stem cells for treatment of
IBD, they also found comparable markers between their dif-
ferent sources of MSCs. A review article by Sarantopoulos et al.
expands on the cell surface markers of MSCs and adipocyte
precursor cells [77], although this article focused on preadipo-
cytes derived from patient adipose tissue.

As the adipose is a highly active endocrine tissue, studies
focused on comparing adipocyte precursors and mature cells
derived from either patient or pluripotent stem cells should
consider the role of adipocyte secretome including secreted
proteins and extracellular vesicle contents [78]. Deshmukh
et al. used high sensitivity MS analysis to establish
a secretome profile between brown and white adipocytes
isolated from different adipose depots in patients. They
found 471 secreted proteins between the white and brown
adipocytes that originated from many different categories.
Among those 471 proteins were 101 proteins specific to
brown adipocytes, giving them a unique profile for this cell
type [79]. Gupta et al. compared the proteome of extracellular
vesicles, which are membrane-bound vesicles with endosomal
origins that carry molecular cargoes that are produced by
various sources of patient derived and iPS-derived mesenchy-
mal stem cells (MSCs). After characterizing extracellular vesi-
cles from different sources using flow cytometry and
confirming common markers through western blots, they ana-
lyzed their proteome using isobaric isotope labeling quantita-
tive MS along with cellular localization assessments. Using this
analysis, they found 223 differentially expressed proteins in
EVs shared between patient and iPS-derived MSCs, with 131 of
these being higher in abundance in patient derived MSC-
extracellular vesicles [80].

Taken together, proteomics offers a means for researchers to
identify and quantify minute changes in protein expression in
cells, cell surfaces, and secretomes to enable improvements of
iPS-derived cellular models. Knowledge of the similarities and
differences between iPS-derived and patient derived primary
cells will be broadly useful in further refinement of iPS cell
models.

5. Applications of proteomics toward iPS-derived
organoid and tissue models

An emerging frontier in stem cell research and regenerative
therapeutics is the ability to use iPS-derived cells to produce
organoids and engineered microtissues that portray a more
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physiologically relevant simile of functioning organs. For
instance, iPS-derived cells have been used to produce micro-
glia and macrophage cells that promote brain organoid
maturation [81], kidney organoids [82], and engineered
heart tissues containing myocytes and fibroblasts [83].
Improvement of tissue generation will benefit from under-
standing the proteomes of the constituent cells, the extra-
cellular matrix in which these cells are embedded, and their
paracrine crosstalk.

5.1. Characterization of tissues and organoids

MS has been used to characterize the effect of culture condition
on iPS-derived engineered heart tissues by comparing their
myofilament protein expression [84]. Another study compared
the proteomic similarities between iPS-derived human cerebral
organoids and fetal brain tissue through a bottom-up proteo-
mics approach to understand the developmental mechanisms
within cerebral organoids [85]. In this study, data generated
from MS were processed and analyzed using multiple data-
bases leading subsequently to the identification of major pro-
teins involved in various neuro developmental stages including
neurogenesis, synaptogenesis, cortical brain development, and
other cell communication and signaling processes. These ana-
lyses serve as a template and a molecular map for carrying out
additional experiments that enable characterization and treat-
ment of many neurodevelopmental disorders.

Patient-derived iPS cells have been used to construct three-
dimensional cerebral organoids to understand complex dis-
eases, and proteomics has been used to better understand
cellular heterogeneity, interactions, and architecture of these
models. For instance, patient-derived iPS cells were used to
produce 3D cerebral organoids with schizophrenic neurodeve-
lopmental pathology [86]. Organoids from 25 donors were
subjected to tandem mass tag 16-plex isobaric barcoding and
MS to compare schizophrenic and control organoids. The
authors found that approximately 2.6% of the total organoid
proteome was differentially abundant in schizophrenic donor-
derived organoids, with specific neuronal factors such as MAP2
and TUBB3 to be significantly depleted when compared to
control organoids. Further, the study also compared the protein
expression profile against a notable schizophrenia GWAS loci
and detected differential expression of pleiotrophin (PTN) that
was previously implicated as a risk factor of the disease.

In another study, iPS cells generated from patients with
autism spectrum disorder were differentiated to produce cer-
ebral organoids, and hyperplexed protein analysis was per-
formed to study their proteome phenotype across various
timepoints [87]. Differential expression of proteins pertaining
to energy metabolism pathways, cell adhesion, cell cycle, and
cytoskeleton were identified along with a cluster of proteins
that can be used as potential biomarkers for autism spectrum
disorder identification. Lastly, label-free MS has been used to
map the proteomic changes in cerebral organoid develop-
ment from trisomy 21 human iPS cells [88]. Altogether, these
studies demonstrate the utility of proteomics to validate and
characterize organoid models for studying complex neurode-
velopmental processes in vitro.
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5.2. Secretome and paracrine signals

Proteomics can be used to survey the secretome (Box 3), the
complement of molecules secreted by cells into their surround-
ings that play important roles in mediating cell-cell communica-
tions. Measuring the paracrine signaling of cells is of interest for
understanding the communication and physiology of different
cell types within organoid models. In a landmark study by
Pellegrini et al,, the authors developed a choroid plexus organoid
model from human ES and iPS cells, which contains epithelial
and stromal cells and which produces an in vitro secretome that
mimics human cerebrospinal fluid (CSF) [89]. This in vitro CSF-like
fluid shifts in protein abundance over time that shows sign of
organoid maturation, with proteins abundant in early time
points (e.g. AFP) resembling embryonic human CSF samples
and proteins abundant in later time points (after 60 days) (e.g.
SOD1) resembling more like pediatric and adult CSFs. Another
study, by Hale et al, involved the generation of 3D human
glomeruli from iPS-derived kidney organoids along with orga-
noid-derived podocyte cell population. In comparison to the
previously used 2D podocyte cell lines, these 3D models facili-
tated better podocyte-specific gene expression and polarized
protein localization. The organoid-derived glomeruli also
retained cell-specific markers longer than their 2D counterparts,
indicating the flexibility of the model to be leveraged as a drug
testing or toxicity screening platform [90].

Box 3. Proteomics technologies to map the secretomes of iPS models

Cells communicate with each other in part through secreted proteins,
known as the secretome. The secretomes of iPS cells contain pro-survival
molecules that have been associated with therapeutic effects of cell
therapies [111], whereas a secretome library screen has also identified
molecules including FGF16 that could improve the proliferation of iPS-
derived cells [112]. Studying the secretomes of iPS cells and iPS-derived
cells and how they compare to primary stem cells or adult cells are
therefore an important goal for improving stem cell research. Many
proteomics approaches have been applied to enable secretome analysis
of cultured cells and tissues [113]. A successful application will need to
be able to distinguish bona fide secreted proteins from other back-
ground proteins in the conditioned medium (e.g. proteins from culture
medium, serum supplement, or cell culture matrix). An example of such
methods is secretome protein enrichment with click sugars (SPECS),
which involves the click chemistry reaction and pull-down of glycosy-
lated secretory proteins using N-azido-mannosamine (ManNAz), an azido
group-bearing sugar [114]. Because ManNAz is metabolically incorpo-
rated, proteins in the cell culture matrix or media are excluded. The
captured glycoproteins are further quantified and analyzed through DDA
or DIA MS. Another innovative technique for secretome analysis involves
the stable isotope dynamic labeling of secretomes (SIDLS) [115]. This
approach uses the principles of pulsed SILAC to differentiate secretory
proteins from intracellular proteins and also reveal information on
secretory flux.

6. Expert opinion

Large-scale profiling of proteomes remains an exciting field
with rapid progress in addressing the many technical chal-
lenges of protein study. Although proteins provide a direct
readout of cell state, a full elucidation of the proteome
remains highly challenging. Despite progress, sample com-
plexity and heterogeneity still present a challenge to the
depth of proteomics analysis such that the overall depths of

proteomics experiment still lag those of many RNA sequen-
cing experiments. This challenge is in part due to the lack of
means to amplify protein samples unlike in nucleic acids, as
well as the much larger copy numbers and dynamic ranges of
proteins in the cell. As proteomics moves toward single cell-
level analysis [91,92], the challenges outlined above will
become more pronounced and will require innovative
advances to improve the sensitivity and reproducibility of
analysis. The analysis of iPS and iPS-derived cells also face
unique challenges. Compared to conventional cell ‘monocul-
tures’ that largely contain only one homogenous cell type,
differentiating iPS cells and tissues contain a heterogeneous
population more resembling adult tissues, which introduces
additional dynamic range, sample complexity, and batch-to-
batch variability concerns. The relatively small size of iPS cells
leads to less protein content (requiring higher sensitivity) than
other cell types, requiring more cell numbers for bulk analysis
and compounding the difficulty of single-cell analysis. For
organoid and microtissue analysis, the presence of cell culture
substrate matrix proteins can also confound proteomics ana-
lysis. While proteomic profiling of organoids is a promising
method for establishing in vivo and in vitro comparisons and
associations, the culture conditions of organoids can limit the
translatability of analyses. For instance, the presence of com-
mon matrix scaffolds for organoid culture has been associated
with influencing the proteomic analysis [93]. Developing
methods to efficiently dissolve the matrix and recover orga-
noid cells facilitates more accurate proteome profiling that is
indispensable for promoting translational organoid models.

Secondly, the full complexity of the proteome is still being
investigated. Recent proteomics experiments been able to
confidently identify the ‘full proteome’ as defined by one
protein product per expressed gene, but many routine quan-
tification experiments continue to fall short of identifying the
full proteome, which makes it difficult to draw inference on
low abundance proteins especially some low abundance tran-
scription factors and pluripotency factors. Moreover, the full
elucidation of the proteome will require careful consideration
of up to millions of ‘proteoforms’ present in a cell, due to post-
translational modifications and glycosylation [94] or alterna-
tive splicing [95] that create multiple protein species per gene.

Thirdly, due to the very large scale of data generation in
omics experiments, many of the findings remain to be vali-
dated by orthogonal methods. It should be noted that con-
temporary MS analysis is considerably more reliable and
rigorous than affinity-based methods using antibodies, which
are often poorly validated and may bind nonspecifically or fail
to recognize their targets altogether [96-99]. Nevertheless,
orthogonal corroboration of findings is one of the corner-
stones of the scientific enterprise, and many findings may
fail to replicate despite best intentions due to various techni-
cal and biological sources of variability. Technologies that can
be used in conjunction with proteomics to verify findings in
high throughput will likely represent an increasingly important
area in the near future.

Looking forward, the integration of multiple omics data types
or multi-omics analysis will likewise represent another important
frontier for new insights across different layers of biological
regulations. Combining proteomics and transcriptomic data



offers a more comprehensive depiction of cellular gene expres-
sion regulations and their role in mediating biological functions
than either method alone. For instance, the use of RNA-
sequencing and MS together can help discover alternative pro-
teins that arise during the differentiation of iPS-derived cells [95].
A study by Connor-Robson et al. involved the generation of
a novel integrated proteomics and transcriptomics approach to
understand the impact of LRRK2 protein mutations in iPS-derived
neurons [100]. Finally, a study by the HipSci consortium using iPS
panels showed that pQTL can be found to explain relationships
between gene variants and protein levels to identify new gen-
ome-proteome associations [45]. More effective integration
methods that leverage iPS cells are therefore needed that can
combine diverse data types to derive new insights.

In summary, proteomics has proven valuable in revealing the
molecular markers and pathways guiding iPS cell generation,
reprogramming, differentiation, maturation, and tissue formation.

As iPS cell technologies continue to move toward novel
applications in the formation, characterization, and investiga-
tion of organoids and microtissues, we expect the technolo-
gies of large-scale protein identification quantification to
continue to play important roles in understanding the mole-
cular mechanisms that govern cell and tissue behaviors in
diverse fields.
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