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SUMMARY

Protein turnover is a critical component of gene expression regulation and cellular homeostasis, yet methods 

for measuring turnover rates that are scalable and applicable to different models are still needed. We intro

duce an improved D2O (heavy water) labeling strategy to investigate the landscape of protein turnover in cell 

culture, with accurate calibration of per-residue deuterium incorporation in multiple cell types. Applying this 

method, we mapped the proteome-wide turnover landscape of pluripotent and differentiating human 

induced pluripotent stem cells (hiPSCs). Our analysis highlights the role of APC/C (anaphase-promoting 

complex/cyclosome) and SPOP (speckle-type POZ protein) degrons in the fast turnover of cell-cycle-related 

and DNA-binding hiPSC proteins. Upon pluripotency exit, many short-lived hiPSC proteins are depleted, 

while RNA-binding and -splicing proteins become hyperdynamic. The ability to identify fast-turnover proteins 

also facilitates secretome profiling, as exemplified in hiPSC-cardiomyocyte and primary human cardiac fibro

blast analysis. This method is broadly applicable to protein turnover studies in primary, pluripotent, and 

transformed cells.

INTRODUCTION

Protein abundance in the cell is governed by a balance between 

synthesis and degradation. The half-life of a protein pool regu

lates its homeostasis and function, influencing diverse biological 

processes from cell cycle to gene regulation and stress 

response.1–5 Proliferating cells in culture can remove proteins 

through passive dilution to daughter cells, or active proteoly

sis.6,7 Proteins regulated by the latter undergo excess synthesis 

and degradation cycles beyond what is required for cell 

doubling, and are often targeted for degradation by E3 ubiquitin 

ligases via specific sequence motifs, which are known as de

grons.8–10 Prior works have mapped hundreds of short-lived or 

rapidly degraded proteins in a few cell types to explore the roles 

of proteolysis in regulating protein abundance and disease path

ogenesis.11,12 Nevertheless, the extent to which these fast-turn

over proteins are dynamically synthesized and degraded in 

different cells and cell states remains unclear. However, active 

protein translation is known to be required to maintain open 

chromatin, a hallmark of pluripotent cells.13 The characterization 

of proteins that undergo rapid synthesis and degradation cycles 

in pluripotent cells remains an open goal that can shed light on 

intervention targets in cell fate and malignancy.

To measure protein turnover in cell culture, the common ap

proaches are to monitor the depletion of existing proteins 

following cycloheximide inhibition of new protein synthesis11,12

MOTIVATION Dynamic stable isotope labeling by amino acids in cell culture coupled with mass spectrom

etry is commonly used to measure protein turnover in cell culture but requires altering culture medium 

composition and may not label some peptides. We describe a simple and convenient alternative for 

measuring protein turnover kinetics in cultured cells by adding low-volume D2O (heavy water) to standard 

tissue culture media. Addressing a critical gap, we determined the number of deuterium-accessible atoms 

on all 20 proteinogenic amino acids across multiple cell types. This allows accurate interpretation of D2O- 

labeled mass spectra to measure protein turnover kinetics and secretome flux on a proteome scale. 
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or to use dynamic stable isotope labeling by amino acids in cell 

culture (SILAC) to label essential amino acids with multiple heavy 

stable isotope atom centers (e.g., 13C6
15N2-lysine).14–17 Despite 

their utility, these techniques have limitations that warrant the 

continued development of complementary methods. Cyclohex

imide can lead to unwanted effects on cellular physiology, 

including inhibition of protein degradation.18,19 Dynamic SILAC 

is constrained by the cost of synthetically labeled amino acids, 

the inability to label peptide sequences lacking targeted resi

dues, and the need to modify culture media to use dialyzed 

serum and depleted basal media.

D2O (heavy water) provides a universal isotope label for multi

ple biomolecules. Upon D2O labeling, deuterium rapidly incorpo

rates into stable C–H bonds in non-essential amino acids during 

their biosynthesis and metabolism.20–22 Labeled amino acids are 

subsequently incorporated into nascent protein chains to enable 

turnover quantification by mass spectrometry (MS). D2O labeling 

has been successfully applied to trace protein synthesis in ro

dents,20–25 non-human primates,20 and humans22,26–28; yet, its 

adoption to cell culture is underrealized. A key variable in 

analyzing D2O-labeled data to extract kinetics information is 

the number of deuterium-accessible sites in a peptide, which 

is established in mammals but remains unclear in cultured cells. 

Although D2O in culture media will equilibrate with hydrogen 

atoms in cellular amino acids,29,30 the extent to which it does 

so in each amino acid is unknown, given that many amino acids 

are already present in high concentration in culture media.30–32

As such, few studies have applied D2O to measure individual 

protein turnover in cell cultures. Where such studies existed, 

they were largely confined to measuring the total alanine rather 

than individual protein turnover rates29,33,34 or were focused on 

selected peptides of interest rather than proteome-scale 

investigations.23,31,35

Here, we describe an updated workflow using D2O labeling to 

measure proteome-wide individual protein turnover rates in cell 

culture. To enable interpretation of labeled MS data, we deter

mined the extent of deuterium enrichment in all 20 proteinogenic 

amino acids following D2O enrichment by using machine 

learning strategies and experimental calibration with cells of 

known labeling proportions. The established per-residue enrich

ment values show clear differences from those used in animal 

studies or commonly assumed in earlier cell culture experiments 

and enable precise turnover calculations for virtually any protein 

sequence. We demonstrate the versatility and robustness of 

deuterium labeling in two separate applications—first, to map 

the protein turnover landscape of human induced pluripotent 

stem cells (hiPSCs) under maintained pluripotency and directed 

differentiation, and second, to characterize the secretome of hu

man cardiac cells under baseline or stressed conditions. The re

sults establish D2O labeling as a flexible and accessible method 

to assess protein degradation and homeostasis in multiple 

models.

RESULTS

D2O incorporates deuterium into multiple non-essential 

amino acids in cell culture

D2O labeling leads to a gradual shift in the isotope profiles of 

peptides, which is a function of the excess deuterium enrichment 

(p), the number of deuterium-accessible labeling sites in a pep

tide (Spep), and the fraction of newly synthesized peptide (θ) in 

the sample (Figure 1A). Finding the parameter of interest (θ) 

needed to calculate protein half-life therefore requires knowing 

the Spep of each peptide. In animal experiments, the conven

tional method calculates Spep of a sequence from the sum of 

per-residue labeling sites, commonly those measured from 

mouse tritium labeling.36 To acquire these values in cell culture, 

we generated a complete labeling calibration standard by ex

panding human AC16 cells in DMEM/F12-fetal bovine serum 

(FBS) media diluted with 6% D2O for 9 doublings37 (Figure 1B). 

This guarantees ≥99.8% complete labeling from cell division 

even in the absence of additional protein degradation (i.e., all 

proteins are fully labeled with 6% deuterium). This fully labeled 

pool is then mixed with unlabeled cell lysate at fixed proportions 

to establish the ground-truth fractional synthesis in each sample 

(Figure 1B). From the fully labeled samples, per-peptide labeling 

sites can be calculated by considering the proportion of peptide 

molecules that contain no label, even without knowing the indi

vidual amino acid labeling sites (Figure 1C). As expected, D2O in

corporates deuterium into peptide sequences in cell culture, 

leading to a drop of the ratio of the monoisotopic peak over 

the entire isotope envelope (A0). However, considerably fewer 

Figure 1. D2O labeling incorporates deuterium into proteins in cell culture with residue specificity 

(A) Mass shifts of peptide isotope envelopes following SILAC and D2O labeling. 

(B) Calibration standard cells are cultured in media with 6% v/v H2O or D2O for 9 doublings to yield unlabeled and fully labeled proteins, which are then mixed in 

fixed proportion and analyzed by liquid chromatography-tandem MS. 

(C) Calculation of peptide labeling sites (Spep) from standards. Right: line plots of three peptides measured in our experiments. The initial value of A(0) is a function 

of peptide mass/length, whereas the decrease depends on numbers of D-accessible labeling sites. 

(D) Violin/boxplot of peptide labeling sites calculated from the m0/mi ratio of the labeling standard samples, highlighting differences (Wilcoxon p < 2.2e–16) to 

animal labeling sites. 

(E) Prediction of per-residue labeling sites (Saa). Method 1: multiple linear regression to learn Saa from empirical Spep. Method 2: global optimization against 

calculated isotopomer profiles using differential evolution (D.E.) (see STAR Methods). Bar charts: number of label-accessible hydrogens per amino acid across 

three cell types. 

(F) Strong correlation of Saa values (r: 0.991) predicted from methods 1 and 2. Dashed line: 1:1. *Label shading denotes whether amino acids are supplemented in 

DMEM/F12 at appreciable concentration (≥10 mg/L, except L-tryptophan any concentration). The F12 nutrient mix contains low levels (<10 mg/L) of Ala, Asp, 

Asn, and Glu that are not marked. 

(G) Comparison of learned Saa in AC16 against animal labeling sites.36

(H) Labeling sites in hiPSC cultured in mTeSR Plus. Left: AC16-derived Saa values accurately predict measured Spep in hiPSC. Right: similar predicted Saa (r: 0.97) 

between two cell types. Label shading denotes whether amino acids are supplemented in DMEM/F12. 

(I) As in (H), but for hiPSC-CM. Label shading denotes whether amino acids are supplemented in RPMI-1640 (≥10 mg/L except L-tryptophan).
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atoms are incorporated than in animals (i.e., less A0 decreases 

from 0% to 100% labeling), with a median 9.7 sites per 

peptide vs. 24.6 when estimated using mouse in vivo labeling 

sites (Figure 1D). Training a multiple linear regression model, 

we learned the per-residue deuterium-accessible sites from 

the total labeling sites of each peptide and their amino acid com

positions (Figure 1E; Table S1). In parallel, we corroborate the la

beling sites with a complementary machine learning strategy that 

does not rely on the fitted A0 information by performing nonlinear 

global optimization to minimize the differences between the 

empirical isotope profiles and the predicted profiles calculated 

from a fine structure calculator38 (Figure 1E; STAR Methods). 

The two strategies returned near-identical values (r: 0.991; R2: 

0.981), indicating that we are able to acquire internally consistent 

information on the extent of deuterium labeling in these cells 

(Figure 1F). The results show that Asp, Ala, Pro, Glu, and 

other amino acids are amenable to D2O labeling but often at 

a lower extent than in vivo; for example, both models predict 

∼2 exchangeable hydrogens in Ala vs. 4 in animals (Table S1). 

Contrary to animals, Gln, Arg, Ser, and His are largely inacces

sible to labeling in cell culture (Figure 1G).

We next extended the fully labeled calibration standards to 

two additional cell types, hiPSC and hiPSC-derived cardiomyo

cytes (hiPSC-CM). Both are widely employed as physiologically 

relevant cell models for drug discovery and disease mechanism 

studies. Notably, hiPSCs are commonly cultured in specialized 

media (e.g., mTeSR Plus) for which SILAC-compatible depleted 

basal media is not commercially available, thus necessitating 

custom media formulations and providing a compelling use 

case for D2O labeling as a flexible alternative. To generate the 

calibration cells, hiPSC were cultured to ≥10 doublings in 

mTeSR Plus. To procure fully labeled non-proliferative hiPSC- 

CM, hiPSCs were passaged in D2O prior to differentiation. The 

empirical peptide labeling sites in hiPSCs are similar to those 

predicted using the AC16-derived cell culture values (Figure 

1H) (Pearson’s r: 0.942; R2: 0.887) and similarly for hiPSC-CM 

(Figure 1I) (r: 0.917; R2: 0.840). The trained linear regression 

models likewise predicted similar labeling sites (hiPSC r: 0.970; 

hiPSC-CM r: 0.954) (Figures 1H and 1I). Notably different is 

the labeling of Asn, which incorporates deuterium in AC16 

under DMEM/F12 with FBS, but to a lesser degree in hiPSCs un

der mTeSR and absent in hiPSC-CMs under RPMI-1640 with 

B27, which contains supplemented Asn. Conversely, multiple 

non-essential amino acids remain effectively labeled by 

D2O in hiPSC-CMs, despite RPMI-1640 being a complete me

dium that contains Asp, Glu, and Pro, indicating the primary 

source of these amino acids for protein production likely lies 

in endogenous biosynthesis rather than external uptake. The 

predicted labeling sites show considerable consistency, while 

reflecting some differences in cell types or culture medium 

compositions.

Amino acid analysis corroborates the determined D2O 

labeling sites

To experimentally verify the labeling sites, we performed acid hy

drolysis to release free amino acids from proteins in unlabeled 

and fully labeled AC16 cells and then measured the deuterium- 

tagged amino acids using direct infusion high-resolution MS 

(Figure 2A). At 120,000 resolution, 13C- and D-containing amino 

acid peaks can be resolved by their mass differences from mass 

defects, allowing their relative intensities to the monoisotopic 

peaks to be compared with calculated isotope profiles under 

different D-accessible labeling site predictions. The relative 

intensity of the signals corresponding to D1-alanine (m/z 

91.0621, +1 charge) is consistent with predictions in cell culture 

(1–2 labeling sites vs. 4 in adult mice in vivo) (Figures 2B and 2C). 

The measurements are not biased by transient time in the Orbi

trap mass spectrometer, as similar values are obtained at 

different mass resolutions (Figure S1). Conversely, the absence 

of D1-arginine peaks (m/z 176.1252, +1 charge) is consistent 

with the predicted absence of deuterium-accessible arginine la

beling sites (Figures 2D and 2E), whereas amino acid analysis 

also supports 1–2 labeling sites in proline and <1 site in glycine 

and leucine/isoleucine (Figure 2F; Table S2). We determined 

highly consistent labeling sites in three cell types (transformed 

AC16, pluripotent hiPSC, differentiated hiPSC-CM), supporting 

the use of D2O labeling for protein turnover studies in multiple 

cell types. The approach also provides a general strategy to 

find labeling sites in other cultures.

D2O labeling enables single-point measurement of 

protein synthesis kinetics in cells

We next asked whether the labeling sites support interpretation 

of isotopomer envelopes to measure proteome-wide turnover 

rates. At baseline, AC16 cells proliferate quickly with a doubling 

time of ∼16–20 h, and protein isotope incorporation rates are ex

pected to largely reflect proliferation rates under the particular 

culture conditions. Therefore, we labeled proliferating AC16 

Figure 2. Experimental validation of deuterium-incorporation sites and single-time-point kinetics analysis 

(A) Experimental validation of predicted labeling sites using acid hydrolysis and high-resolution MS. 

(B) Mass spectra from acid hydrolysis of unlabeled samples, showing no detectable D-alanine. N.D., not detected. 

(C) As in (B), but for alanine in fully labeled samples, showing detectable D-Ala at m/z 91.0612 with 9.3% relative intensity to monoisotopic Ala (m/z 90.0550). Inset: 

IsoSpec2-predicted D-Ala relative intensity (0.1%, 6.5%, 12.8%, 19.2%) relative to the monoisotopic peak at SAla = 0–3, respectively. 

(D) As in (B), but for Arg. 

(E) As in (C), but for Arg, showing no detectable D-Arg (m/z 176.1252) in cell culture. 

(F) Relative intensity of D-Ala, Asp, Glu, Gly, Leu/Ile, Pro, and Arg in unlabeled and fully labeled samples, using amino acid analysis with high-resolution MS. Asn 

and Gln are deamidated during acid hydrolysis39; hence, measured values are a mixture of Asp/Asn and Glu/Gln. 

(G) Application of D2O labeling to proteome-wide turnover kinetics in normal and stressed AC16 cells. 

(H) Point ranges of protein half-life measured by D2O and SILAC in AC16, showing comparable ranges between methods. D2O recapitulates a slowdown in cell 

proliferation and protein synthesis upon thapsigargin-induced ER stress. Error bars: SD. 

(I) Scatterplot of D2O and SILAC measurements after 1 μM thapsigargin, revealing strong correlation (r: 0.94) and stress-response genes with high turnover flux 

upon ER stress.
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with 6% D2O for 24 h (n = 5) then quantified isotope incorporation 

from a single time point (Figure 2G). The quantified individual 

protein turnover rates returned an expected per-protein median 

half-life of 16.7–17.5 h (Figure 2H; Table S3), in agreement with 

the doubling time and with prior half-life measurements (∼16– 

20 h).40 We did not observe a change in proliferation rate upon 

diluting the media with low-dose (6%) D2O, consistent with prior 

reports of minimal effects on cell growth.31 In comparison, non- 

proliferative hiPSC-CM and primary human cardiac fibroblasts 

(hCFs) show considerably longer median half-lives, of 53.9 and 

55.1 h, respectively (Figure S2; Table S3).

To evaluate measurement accuracy, we labeled AC16 under 

thapsigargin-induced endoplasmic reticulum (ER) stress and 

compared it to SILAC data. ER stress is known to halt cell prolif

eration, and accordingly we observed a nearly 2-fold reduction in 

protein half-life upon a single concomitant dose of thapsigargin 

with D2O, to 31.5–34.8 h. A second set of replicate experiments 

(n = 4), performed by a different experimentalist using a different 

AC16 stock labeled for 16 h, likewise recapitulates a nearly 2-fold 

decrease in turnover rates (Figure 2H). While overall protein 

turnover decreases, the span of measured turnover rates 

broadens as ER stress response pathways blunt protein 

synthesis except for some stress response proteins,40 allowing 

correlative comparison with SILAC measurements previously 

acquired at 16 h.39 The D2O labeling data show a robust correla

tion with dynamic SILAC (r: 0.94; p: 3.5e–59). In parallel, D2O la

beling successfully captured the accelerated turnover of ER 

stress response proteins, including HSPA5/BiP, HYOU1, and 

HSP90B1 (Figure 2I; Table S3). Thus, we are able to measure pro

teome-wide turnover rates and interrogate cellular physiological 

responses using D2O labeling at a single time point.

Mapping the proteome-wide turnover kinetics in hiPSC 

with D2O labeling

We next applied D2O labeling to a larger-scale time-course 

experiment, where hiPSCs are labeled in 6% D2O in mTeSR 

Plus at 9 biologically independent time points, each from 2 repli

cate time series (Figure 3A). Upon D2O labeling, hiPSC proteins 

show gradual increases in calculated fractional synthesis, as ex

isting proteins are replaced by newly synthesized proteins over 

24 h (Figure 3B). The samples were processed to quantify 

42,865 distinct peptide sequences that are uniquely mappable 

to 6,905 proteins (median 3,599 proteins and 17,545 peptides 

per sample). We then performed curve fitting of all time points 

to a single exponential kinetic model in each peptide to find 

the best-fit isotope incorporation rate constant k of 18,392 pep

tides across 2,995 proteins. The majority of peptide time series 

showed high goodness-of-fit between data and kinetic model, 

with about half showing R2 ≥ 0.7 and over one-third with R2 ≥

0.8 (Figures 3C and 3D). A second-pass protein-level fitting using 

peptides with peptide-level R2 ≥ 0.8 then yielded the high-con

fidence protein-level k of 1,931 proteins (Table S4). Nearly all 

proteins retained high R2 values, demonstrating that the labeling 

sites allow confident interpretation of spectra across many 

different peptides to derive fractional synthesis values (Figure 

3E). Constituent peptides within the same protein give highly 

consistent k values (median intra-protein peptide geometric co

efficient of variation [CV] 20.7%), comparable to precisions in 

SILAC or animal D2O experiments. Data quality is likewise re

flected by good agreement in protein k when the two time series 

are fitted separately (r: 0.76); as well as a median dk/k (fitting er

ror relative to k) of 24.9%. The data cover proteins with a wide 

range of turnover rates, from fast (k > 0.1 h− 1; APOE and 

CDC20) (Figure 3E) to moderate (0.05 ≤ k < 0.1 h− 1; HSPB1 

and VIM) (Figure 3F) and slow (k < 0.05 h− 1; C1QBP and 

GOT2) (Figure 3G).

Interestingly, the majority of hiPSC protein turnover rates 

occupy a relatively narrow band (Figure 4A). At the bottom 10th 

percentile, the measured protein turnover rate in hiPSC is 

0.033 h− 1 (Figure 4B), corresponding to a half-life of 21.2 h, which 

is in agreement with the typical hiPSC doubling time in the litera

ture and our observations (24–36 h).41 The turnover rates have a 

heavily right-tailed distribution (Figure 4B) that deviates from the 

log-normal distribution typically observed in other proteomes 

in vivo42,43 (D’Agostino p: 3.7e–93; skewness 1.54). This distribu

tion categorizes hiPSC proteins into three groups: (1) the majority 

of proteins in the bottom 70 percentiles showing little synthesis 

beyond that needed for cell doubling (half-life > 11.8 h); (2) pro

teins in the 10th–30th percentiles (half-life 6.6–11.8 h) with appre

ciable excess turnover cycles beyond cell doubling; and (3) pro

teins in the top 10 percentiles (half-life ≤ 6.6 h) with rapid 

synthesis-degradation kinetics. Fast-turnover proteins are signifi

cantly enriched in cell-cycle, proliferation signaling, and poly

ubiquitination processes (Fisher’s exact test q <0.01), whereas 

slow-turnover proteins are associated with translation and meta

bolism (Figure 4A; Table S5). These enrichments are corroborated 

by proteome-wide gene set enrichment analysis (GSEA), which 

shows that mitochondrial proteins tend to turn over slowly, 

whereas fast-turnover proteins are enriched in cell-cycle, extra

cellular space, and extracellular signaling terms (Figures S3A 

and S3B). Thus, the majority of hiPSC proteins are parsimoniously 

synthesized, even as proteins with different biological functions 

are synthesized and degraded to different extents.

The production of protein molecules accounts for a substantial 

part of the bioenergetic and biosynthetic budget of proliferating 

cells44,45 and is constrained by selective pressure.46 To explore 

Figure 3. Application of D2O labeling to measuring proteome-wide turnover kinetics in hiPSCs 

(A) Measurement of protein turnover in hiPSC-CM using D2O labeling in a multi-point time-course design. 

(B) Fractional synthesis over the course of labeling in two replicate time series of 9 time points each. 

(C) Proportion of quantified peptides that fit to a standard kinetics model at different R2 cutoffs. 

(D) As in (C), but for a second-pass weighted protein-level fitting, after selecting peptides with R2 ≥ 0.8. 

(E) Isotope incorporation kinetics of proteins selected to represent the dynamic range of turnover, highlighting two fast-turnover proteins APOE (top) and CDC20 

(bottom). Black line: kinetic curve governed by best-fit k; red: standard error. 

(F) Same as (E), but for moderate-turnover proteins HSPB1 and VIM. 

(G) Same as (E), but for slow-turnover proteins C1QBP and GOT2.
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the energy expenditure of protein synthesis in hiPSCs, we calcu

lated the absolute copy numbers per cell of quantified proteins 

using the proteomic ruler method (Figure 4C; STAR Methods). 

The calculated absolute protein quantities are consistent across 

time points and correlate robustly with estimates in embryonic 

mouse fibroblasts14 (Pearson’s r: 0.76 [0.74–0.78]; p: 2.2e–313 

in log-log scale) despite methodological differences (Figures 

S3C and S3D). As expected,47 protein abundance correlates 

negatively with k (Pearson’s r: − 0.32; p: 2.2e–46) (Figure 4D), 

which may reflect a constraint on high-abundance protein syn

thesis due to energetic or ribosome capacity limits.45,48 Protein 

k is poorly explained by protein sequence (isoelectric points, 

hydropathy, molecular weights, lengths; Figures S4A–S4D) or 

structural features (disorder,49 helix and strand folds, turns; 

Figures S4F–S4I), consistent with prior observations.17 From 

the absolute protein abundance estimates, we calculated the 

peptide chain elongation ATP usage and amino acid biosynthetic 

cost50 of protein synthesis (Figures 4C and S4E). Surprisingly, 

fast-turnover proteins in hiPSC have a higher average amino 

acid biosynthetic cost than low-turnover proteins (Figure 4E). 

Although fast-turnover proteins represent a minor fraction 

(∼6%) of the total protein mass per hiPSC, they account for up 

to one-third of the energy budget needed for protein synthesis 

beyond the minimal levels required for cell proliferation 

(Figure 4F). Thus, this analysis reveals that hiPSC protein synthe

sis and usage are not constrained by the biosynthetic costs of 

amino acids, which deviates considerably from observations in 

aging animals, where proteins with metabolically expensive 

amino acids are synthesized parsimoniously.43

Hyperdynamic proteins in hiPSCs are associated with 

specific degron motifs

Proteins that are actively proteolyzed in proliferating cells have 

been referred to as rapidly degraded, short-lived, or unstable.11,12

Below, we use the terms fast-turnover or hyperdynamic proteins 

to highlight that they are not inherently unstable but synthesized 

Figure 4. Features of hiPSC proteome-wide turnover dynamics 

(A) Ranked protein turnover rates in hiPSCs. Red dashed lines show the turnover rates at the top 10th, 30th, 50th, and 90th percentiles. Top-10 percentiles are 

enriched in cell-cycle proteins. Colors: estimated absolute copy number per cell (see E). 

(B) Histogram of turnover rates showing a right skewed distribution. 

(C) Calculation of protein copy number and total energetic costs of protein turnover. [P], copy number; k, turnover rate constant; L, length. 

(D) Correlation between protein copy number and turnover rates. 

(E) Fast turnover is associated with high protein average energy cost per amino acid (ECPA). 

(F) High-turnover proteins incur a disproportional energetics budget in ATP and amino acid biosynthetic cost. Proportional ATP usage and biosynthetic costs are 

calculated based on turnover beyond what is assumed to be minimally needed for cell doubling, at 90th percentile of all protein k.
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and degraded quickly under presumed steady state. Despite pre

vious studies aimed at mapping these proteins in multiple cell 

lines,11,12 we found a number of previously unreported fast-turn

over proteins in hiPSCs, suggesting they are cell type specific 

(Figure 4C). Whereas some non-overlap exists because secreted 

and extracellular proteins were discarded in a prior study12 (as 

these proteins may be removed by media change rather than pro

teolysis; see below), we also identified >100 fast-turnover intracel

lular proteins that were not reported in prior studies, including 

KIF22, which functions in spindle formation in mitosis, BUB1B, 

which acts as a mitotic checkpoint protein, and PPP1CC, a nu

clear phosphatase that participates in cell division, the nucleolar 

protein HEATR1, and splice factor SRSF5 (Table S4).

To investigate the proteolytic mechanisms that drive the syn

thesis-degradation cycles of these hyperdynamic proteins in 

hiPSCs, we performed a GSEA-style analysis to test whether 

particular sequence motifs targeted for protein degradation (de

grons) confer faster turnover, which we call degron set enrich

ment analysis (DSEA; STAR Methods). Among 105 analyzed de

gron motifs that we retrieved from Degronopedia51 and that 

appear in ≥10 proteins with quantified turnover rates, 2 degrons 

showed a significant association (DSEA adjusted p, false discov

ery rate [FDR] < 5%) with higher protein turnover in hiPSCs, 

namely the anaphase-promoting complex/cyclosome (APC/C) 

KEN box (xKENx) and speckle-type POZ protein (SPOP) ([AVP] 

x[ST][ST][ST]) degrons, whereas a BAG6-type degron (LLLL) 

Figure 5. Fast-turnover proteins in hiPSCs possess degrons targeted by APC/C and SPOP 

(A) Degron set enrichment analysis (DSEA) of proteins associated with various Degronopedia degrons (top 35 degrons shown), showing the significant 

enrichment of the APC/C (KEN) and SPOP degrons among fast-turnover proteins. 

(B) Top 25 DSEA leading edges of significantly enriched degrons (APC/C KEN, SPOP, BAG6) and associated biological processes. 

(C) Proteins containing KEN box or SPOP degron have significantly elevated turnover in hiPSCs. 

(D) Kinetic curves of PRRC2B and PRRC2A in D2O labeled hiPSCs.
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also shows nominal enrichment at FDR <10% (Figure 5A). The 

enriched degrons recognize partially overlapping sets of pro

teins, especially between APC/C and SPOP. Multiple cell-cycle 

proteins are present, enriched particularly in KEN box proteins, 

including CDC20, CENPF, CDCA2, and CDCA5 (Figure 5B), 

whereas multiple degron-containing hyperdynamic proteins 

also participate in DNA/RNA binding, DNA repair, and stress 

response (Figure 5B). Proteins that contain the KEN box or the 

SPOP degron showed significantly elevated turnover rates in 

hiPSCs than proteins that did not possess either, while we did 

not observe evidence of additive effects of the motifs 

(Figure 5C). Notably, the APC/C activator CDC20 itself pos

sesses a KEN box sequence that is recognized by FZR1/Cdh1, 

as part of a feedback mechanism in the late cell cycle. This 

KEN box sequence moreover coincides with a predicted 

PEST motif (epestfind score: 8.85) at residues 97–109 

(KENQPENSQTPTK) that is located within a predicted disor

dered region (MetaPredict52 scores >0.5). Thus, while no prote

ome-wide correlations were found between PEST motifs and 

turnover,17,53 our results here suggest they may contribute to 

degradation of specific hiPSC proteins. The enrichment of the 

APC/C KEN box contrasts with the lack of statistically significant 

enrichment of the other APC/C degrons D box (adjusted p: 0.25) 

or ABBA (adjusted p: 0.65) (Figure 5A); likewise, SCF motifs are 

not significantly enriched despite the central role of the SCF 

(Skp1-Cullin-F-box) complex in the cell cycle. Thus, cell-cycle- 

related ubiquitination processes are differentially active in 

hiPSCs.

To further illustrate the role of degron motifs on turnover, we 

consider PRRC2B (proline-rich coiled-coil protein 2B), a poorly 

characterized RNA-binding protein with fast turnover in hiPSCs 

(Figure 5B). PRRC2B was not previously reported as a fast- 

turnover protein in four cell lines from two separate studies,11,12

but in our data, it is a top DSEA leading-edge protein of both the 

KEN box and SPOP degrons. As PRRC2B is not a known cell- 

cycle protein from annotations or large-scale discovery data,54

we focus on the potential effect of the SPOP degron. PRRC2B 

shares 35.7% sequence identity with its closest homolog 

PRRC2A (Figure S5A), with particular homology in the N-termi

nal disordered region (residues 1–269 in PRRC2B). Within the 

N-terminal region, we find a short linear motif55 recognized by 

SPOP only in PRRC2B (residues 96–100), not in PRRC2A 

(Figure S5B). This sequence also satisfies a more selective 

definition of the SPOP-binding consensus (SBC)56 motif in the 

literature (Φ-Π-S-S/T-S/T; Φ: non-polar; Π: polar) and is evolu

tionarily conserved (Figure S5C). Elsewhere in the sequence, 

PRRC2B features three additional SPOP motifs, two of which 

satisfy the SBC definition (residues 922–926; 996–1,000), vs. 

zero in PRRC2A. SPOP is a substrate-recognizing component 

of cullin-RING E3 ubiquitin ligases that localize to nuclear con

densates.57 As predicted from the lack of the enriched degrons, 

PRRC2A is minimally turned over in hiPSCs (Figure 5D). 

SPOP has been characterized as both oncogenic or tumor sup

pressive in different contexts, including via the degradation of 

NANOG.58–61 While correlational in nature, our analysis 

prompts the hypothesis that SPOP functions to degrade multi

ple hiPSC proteins under baseline conditions, including 

PRRC2B but not its homolog PRRC2A, which can be readily 

tested via mutagenesis of degron sequences. More generally, 

we conclude that D2O labeling can be applied to a versatile hu

man cell model to gain insights into the regulations of protein 

turnover.

Hyperdynamic iPSC proteins are repressed upon exit of 

pluripotency

To further explore the roles of hyperdynamic proteins in pluripo

tency, we re-analyzed our previous data on hiPSC self-renewal 

exit and directed differentiation62 (Figure 6A). On a proteome 

level, fast-turnover hiPSC proteins have significantly more 

repressed expression during 6 days of directed differentiation 

to mesoderm and progenitor cells than slow-turnover proteins 

(Wilcoxon p: 5.6e–6), indicating that a number of fast-turnover 

proteins are preferentially depleted upon loss of pluripotency 

(Figure 6B). POU5F1 (OCT3/4) is a hyperdynamic protein 

and a master regulator of pluripotency, and its abundance 

decreased sharply upon differentiation (limma adjusted 

p < 0.01) (Figure 6C). Other hyperdynamic proteins, including 

aurora kinase B, which plays a role in chromosome segregation 

and chromatin remodeling, as well as heme oxygenase 2, like

wise declined (Figure 6C). Moreover, several hyperdynamic pro

teins overlap with the list of genes required for permissive open 

chromatin in mouse embryonic stem cells reported by Bulut- 

Karslioglu et al.,13 including importin subunit alpha-1 (KPNA2), 

elongin-A, and hyaluronan mediated motility receptor. Thus, 

Figure 6. Regulation of fast-turnover hiPSC proteins upon differentiation and loss of pluripotency 

(A) Comparison of fast-turnover hiPSC protein abundance upon loss of pluripotency. Data from three hiPSC lines (PXD013426) are analyzed. 

(B) Decline in log2 abundance over days post-differentiation. Fast-turnover hiPSC proteins (top 10 percentile) are more likely to be depleted in mesoderm and 

progenitor stages. P: Wilcoxon rank-sum test. 

(C) Example hyperdynamic proteins with decreased abundance upon hiPSC differentiation to mesoderm and progenitors (limma adjusted p < 0.05). 

(D) Same as (C), but for hyperdynamic proteins known to maintain open chromatin in mouse pluripotent stem cells in Bulut-Karslioglu et al.13

(E) To examine protein turnover in early stages of pluripotency exit, hiPSC is labeled with 6% D2O concurrent with GSK3β inhibition in RPMI-1640 + B27 medium 

for mesendoderm induction. Samples are collected at 9 time points in 0–24 h post-labeling/differentiation. 

(F) Heatmap of protein turnover rates among proteins that maintain fast turnover cycles (i.e., top 10 percentiles in pluripotent and differentiating cells). Colors 

denote log10 turnover rates in pluripotent or differentiating cells. Colored circles show proteins associated with significantly enriched terms (FDR < 0.05) in 

STRING. 

(G) As in (E), but for proteins that become slow turnover upon differentiation (bottom 70 percentiles in differentiating cells). 

(H) As in (F), but for proteins that become fast turnover upon differentiation. 

(I) Gain of new fast-turnover proteins during early mesendoderm induction. STRING network showing a module of proteins that become hyperdynamic within 

hours of hiPSC-directed differentiation. Node colors: significantly enriched Reactome and Gene Ontology (GO) terms. Edge colors: STRING network relation

ships.
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their excess turnover cycles may play a role in maintaining open 

chromatin in pluripotent cells, which become lost upon differen

tiation (Figure 6D).

To interrogate how protein turnover changes during early plu

ripotency exit, we performed a new D2O labeling time course 

concurrent with directed mesendoderm differentiation over 

24 h (Figure 6E). As the cells are in non-equilibrium, and some 

heterogeneity is expected in differentiating cell populations, 

we relaxed the peptide-level R2 cutoff to 0.7 and focused on 

1,892 well-fitted proteins (Table S6). After classifying proteins 

as fast- (top 10 percentiles), moderate- (10th–30th percentiles), 

and slow-turnover (bottom 70 percentiles), we identified multi

ple distinct behaviors (Figures 6F–6H). Hyperdynamic proteins 

that retain fast turnover in differentiating hiPSCs include 

CDCA5 and CCNB1 (Figure 6F). These proteins form an inter

connected STRING module significantly enriched in cell-cycle 

and nucleus proteins (Figure S6A). Other proteins are hyperdy

namic in hiPSC but become slow turnover under differentiation, 

suggesting they are no longer synthesized and degraded in 

excess upon exit of pluripotency; while these proteins share 

no significantly enriched annotations (Figure S6B), we note a 

module of interconnected DNA repair and cell-cycle proteins 

FANCI, PLK1, RFC4, and LIG3 (Figures 6G and S8), indicating 

some cell-cycle regulators are no longer under active proteo

lytic regulation. A third category of proteins are minimally 

turned over (i.e., bottom 70 percentiles) in pluripotent hiPSCs 

but become hyperdynamic during differentiation to mesendo

derm, which may be due to newly induced synthesis or rapid 

synthesis-degradation cycles (Figure 6H). Among these pro

teins are SRRM1, THRAP3, AQR, PQBP, and others enriched 

in RNA binding and splicing function (Figure 6I), suggesting pro

tein regulation by active translation-degradation shifts rapidly 

from primarily regulating cell-cycle function toward post-tran

scriptional processes within hours of pluripotency exit. Thus, 

we identified cell-type and state-specific hyperdynamic pro

teins that may present prime targets for manipulating pluripo

tency and lineage determination.

D2O labeling enables secretome flux measurement in 

hiPSC-CM

Lastly, we explored an application of D2O labeling to facilitate 

secreted protein analysis in cell culture. The secretome plays 

an important role in cellular communication and crosstalk, but 

existing MS methods are hindered by challenges of distinguish

ing true secreted proteins from background proteins such as 

those from culture media supplements, basement matrix, or 

passive leakage from cell lysis.63 Current strategies to circum

vent these challenges may be incompletely bioorthogonal64 or 

require genetic manipulation65; thus, generalizable methods 

remain needed that can be applicable to different cell types 

and secretomes. Extracellular proteins often exhibit fast 

apparent k, not necessarily due to proteolytic degradation but 

because the existing protein pools are removed during media 

change, leading to immediate equilibration with background 

isotope enrichment. Fast apparent k should therefore distinguish 

secreted proteins from the bulk of high-abundance intracellular 

proteins that are not synthesized beyond cell-doubling 

needs.66–68 Hence, we applied D2O labeling to analyze cell cul

ture secretomes, focusing on proteins secreted from terminally 

differentiated, non-dividing hiPSC-CMs at 24 and 48 h of label

ing. The experimental and analysis workflow is then applied to 

calculate the fractional synthesis θ, turnover rate constant k of 

proteins, and flux (k × protein concentration [P]) (Figure 7A).

In conditioned media collected after 24 h, annotated secreted 

proteins (UniProt KW-0964) showed higher θ, k, and flux than 

non-secreted proteins (Figure 7B), a trend that continued in 

48-h conditioned media (Figure 7C). Surprisingly, this difference 

is not apparent in whole-cell lysates, which may reflect cell-type 

or experimental design differences from hiPSCs (Figure 7D). 

Focusing on the 48-h conditioned media, we observed that turn

over kinetics allowed ready distinction of extrinsic proteins 

bovine serum albumin (in the culture media) and porcine trypsin 

(used in protein digestion), both of which have very high [P] but 

∼0 k, as no deuterium incorporation occurred (Figure 7E). 

Conversely, classically CM-secreted proteins, including NPPB, 

MDK, and MMP2, can be distinguished from intracellular sarco

meric proteins known to leak passively into the medium upon cell 

lysis, as the former have very high k and the latter high [P] but low 

k. Next, hiPSC-CM expresses multiple types of collagens,69

and we find that collagens have high k and [P] in the conditioned 

media (Figure 7E). The fast kinetics of secreted proteins is 

also reflected in the left-tailed distribution of annotated secreted 

proteins (bootstrap p: 2e–6), contrasted with annotated cell 

membrane and cytoplasmic proteins in conditioned media 

(Figure 7F). Thus, D2O labeling adds discriminant power to 

distinguish secreted proteins from intracellular or media 

Figure 7. Application of D2O labeling to secretome kinetics measurements 

(A) Experimental plans to analyze the secretome of hiPSC-CM treated with doxorubicin or vehicle (DMSO) for 24–48 h. 

(B) Violin/boxplots (interquartile range [IQR]/1.5-IQR) showing the fractional synthesis (left), k (center), and flux (right) of proteins in the conditioned media of 

hiPSC-CM after 24 h of labeling. Colors: UniProt Secreted (KW-0964) (red) vs. non-secreted proteins (blue). 

(C) Same as (B), but for conditioned media collected at 48 h of labeling. 

(D) Same as (B), but for whole-cell lysates at 48 h of labeling. 

(E) Protein k vs. flux in the conditioned media of hiPSC-CM at 48 h. Red data points: UniProt Secreted (KW-0964). Label colors correspond to highlighted protein 

categories. 

(F) Same as (E), but secreted (top), cell membrane (center), and cytoplasm (bottom) proteins are highlighted for conditioned media (left) and whole-cell lysates 

(right). 

(G) Heatmap of proteins with higher flux following doxorubicin. Fill: fold-change (doxorubicin/DMSO). Bullets denote known CM-secreted, SASP, or stress 

proteins. 

(H) Application to analyze the secretome of primary hCF. 

(I) Overlap in secretomes of hCF and hiPSC-CM. Tables: example hiPSC-CM-only, hCF-only, and common secreted proteins. Bar charts: significantly enriched 

GO Biological Processes in hiPSC-CM-only vs. shared secretomes.
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contaminants, which can be exploited to identify high-flux secre

tome components. For instance, a heuristic cutoff of log10 

k ≥ –1.75 covers ≥60% of UniProt secreted proteins found in 

the experiments while excluding sarcomeric proteins and non- 

cellular contaminants, leading to a 4.75-fold odds ratio in 

secreted vs. cytoplasm annotations. Using this cutoff, we 

compared the secretome flux of hiPSC-CM at baseline vs. treat

ment with doxorubicin (Figure S7), a chemotherapy agent that 

causes cardiac toxicity and senescence. We observe that 

doxorubicin treatment induced hiPSC-CM secretion of multiple 

proteins, including known CM secretomes,70 senescence- 

associated secretory phenotype (SASP) components IGFBP7 

and MMP1, and stress-responsive proteins including MDK 

(FDR < 10%) (Figure 7G). Therefore, D2O labeling can facilitate 

the identification of perturbation-induced secretome flux in cell 

models.

Finally, we applied D2O labeling to primary hCFs, obtained 

from non-failing donor hearts not suitable for transplant, and 

labeled with D2O for 48 h (Figure 7H). In total, we identified 99 

high-flux hCF-secreted proteins and 131 high-flux iPSC-CM pro

teins passing our criteria, 54 of which were common between 

two cell types (Table S7). Different classes of proteins are found 

between CM-secreted proteins and commonly secreted pro

teins. Proteins in cell death-regulating and signaling-related 

pathways are statistically overrepresented in hiPSC-CM-only 

secretomes, whereas common and hCF-only proteins are signif

icantly enriched in extracellular matrix organization and integrin 

signaling-related proteins (Figure 7I). Thus, D2O labeling may 

also avail studies of cell-specific secretomes within an organ, 

so as to investigate cellular crosstalk and paracrine signaling.

DISCUSSION

Recent-year methodological advances on analytical frame

works,37,71 alongside bioinformatics tools that enable auto

mated data processing on a proteome scale,42,72–74 have 

enabled the use of D2O labeling for protein-wide turnover ki

netics studies in animals53,75–77 that show comparable or higher 

performance than SILAC.73 In contrast, applications in cell cul

ture have been less developed, with previous work focusing 

largely on the equilibration of D2O with alanine in cultured cells, 

in the assumption that labeling was limited to alanine and glycine 

and to an extent identical to that in adult animals (i.e., four deute

rium atoms in alanine and two deuterium atoms in glycine).31 A 

commonly employed approach is to hydrolyze total proteins 

from cells or subcellular compartments, and then derivatize 

and measure the deuterium enrichment of released alanine using 

gas chromatography (GC)-MS.29,30,33,34 Although effective for 

total protein turnover, this method cannot account for individual 

protein-specific turnover rates. Alternatively, proteins of interest 

may be purified to measure their specific alanine incorporation,23

which reveals their individual turnover rates but does not scale 

easily to proteome-wide coverage. In landmark studies, Busch 

and colleagues demonstrated that peptide-specific turnover 

rates can be discerned in cell culture D2O labeling by using 

mass isotopomer distribution analysis to estimate per-peptide 

total labeling sites from their enrichment plateaus.31,35 Although 

these seminal works demonstrated the feasibility of analyzing in

dividual peptide isotopomer data to derive protein-specific turn

over rates, the analysis was limited to selected Ala/Gly-rich pep

tides within a handful of proteins of interest (isolated major 

histocompatibility complex class I/II proteins). Thus, proteome- 

wide investigations using D2O in cell culture remained to be 

established.

This study presents an updated method to perform proteome- 

wide turnover kinetics studies in cell culture using low-dose D2O 

medium dilution. Building on precedents of D2O labeling to study 

protein turnover, we address a critical gap to greatly expand its 

applicability in cell culture by determining the number of deute

rium-accessible labeling sites across all proteinogenic amino 

acids in multiple cell lines. This yields a general strategy to ac

quire fractional protein synthesis values to calculate turnover 

rates from virtually any peptide in D2O-labeled proteomics 

data. Compared to dynamic SILAC, D2O offers the advantages 

of convenience and compatibility with standard cell culture con

ditions, eliminating the possible secondary effects of cyclohexi

mide or the need for specialized SILAC medium formulations. As 

we show that D2O labels multiple non-essential amino acids, it 

can cover a wider selection of peptide sequences, especially 

where specific modification sites or alternative proteases are 

considered. The low cost of D2O also facilitates prolonged or 

large-scale labeling in certain experimental designs. For 

example, some primary cells have a long protein half-life ap

proaching the protein lifetimes in animals,16 which require longer 

labeling to accumulate sufficient isotope signatures. Other 

studies, such as focusing on protein turnover in subcellular com

ponents,40 may require up to 108 cells per experiment that will 

likewise benefit from the scalability of D2O. Finally, the develop

ment and application of next-generation stem cell and organoid 

models rely heavily on commercial media and differentiation kits 

for batch consistency and reproducibility, which can be easily 

compatible with D2O labeling without formulation of multiple 

SILAC-compatible media.

Using this method, we mapped the proteome-wide turnover 

kinetics of pluripotent and differentiating hiPSCs. We identified 

a parsimonious protein synthesis landscape in hiPSCs, where 

the majority of hiPSC proteins are not synthesized beyond cell- 

doubling demand and are primarily removed via passive dilution 

to daughter cells. This contrasts with observations in animals, 

where median protein half-life (∼4 days in the mouse liver77) is 

far shorter than DNA half-life (>200 days), indicating that a typical 

protein pool is turned over many times in a cell’s lifetime. Mito

chondrial proteins appear to have particularly minimal turnover 

in hiPSCs, consistent with hiPSCs’ having a high glycolytic rate 

while limiting the use of mitochondrial oxidative metabolism to 

maintain pluripotency.78 Conversely, our analysis also uncovers 

a number of fast-turnover proteins with half-lives as short as 

1–3 h, indicating they are synthesized and degraded in excess 

beyond what is required by cell doubling. These hyperdynamic 

hiPSC proteins are enriched in cell-cycle regulation, DNA repair, 

and stress response. Many are not previously reported as short- 

lived and are quickly depleted upon the loss of hiPSC pluripo

tency. Our analysis further highlights that SPOP and APC/C 

degrons play a role in the synthesis-degradation cycles of fast- 

turnover hiPSC proteins that function in pluripotency and 

genome and proteome integrity. These observations echo prior 
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work showing active translation and degradation of cell-cycle 

and chromatin regulators are required to maintain a permissive 

open chromatin, a hallmark of mouse PSCs.13 Fast-turnover 

hiPSC proteins may thus present prime targets for manipulating 

pluripotency-related processes via protein degradation.

In differentiating hiPSCs, we identified a shift in the hyperdy

namic turnover of post-transcriptional regulators from primarily 

DNA-binding to RNA-binding proteins. Our observations are 

reminiscent of the prevalent translational/post-translational 

regulations of nuclear proteins previously described in differenti

ating mouse embryonic stem cells (i.e., their protein level 

changes were not well mirrored by RNA changes79), and sug

gests a mechanism of rapidly rewiring gene expression networks 

in differentiating cells that merits further exploration. Finally, we 

applied D2O labeling to analyze cellular secretomes in primary 

and differentiated cells. Fast label kinetics helps distinguish se

cretome candidates from contaminants and allows comparison 

of secretion flux across conditions. Such kinetic information 

may be useful for elucidating the biological contexts of protein 

secretion events (e.g., delayed kinetics may reflect stalling 

across secretory pathways).

Limitations of the study

The first limitation is that a low dose of D2O was used, which is 

within the range of previous works (4%–15%).30–32,34,77 While 

no effect on proliferation was observed, effects on cellular phe

notypes need to be evaluated further, such as using gene 

expression profiling to ensure minimal perturbation.

Second, we assume rapid and constant equilibration rates of 

D2O with amino acids. This is established in animals, but in cell 

culture, it might be influenced by cell feeding, where media 

change can flood the cells with unlabeled amino acids.30 The in

fluence of cell feeding time and schedule is not investigated. Mi

nor differences in labeling sites exist across cell types that may 

be due to cellular biochemistry and media compositions. In 

slow-growing or non-immortalized cells, it may be infeasible to 

perform fully labeled calibration standards. Sites from other cells 

may be used that only approximate the true labeling extent. MS 

analysis in D2O labeling requires accurate measurement of the 

relative abundance of mass isotopomers within a peptide 

isotope envelope, which is sensitive to the spectral accuracy 

of instruments. More work is needed to examine accuracy and 

precision in different experimental setups.

Lastly, our calculation of protein k assumes constant protein 

abundance, where protein synthesis and degradation rates are 

equal. This assumption does not hold in the hiPSC differentiation 

or hiPSC-CM stressor experiments; hence, only the apparent ki

netics of label incorporation is reported. Protein abundance may 

also drift during prolonged culturing, which was not investigated. 

The theoretical treatment and experimental measurements of 

non-equilibrium protein turnover is an emerging area.80,81 These 

limitations present promising areas of future development.
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14. Schwanhäusser, B., Busse, D., Li, N., Dittmar, G., Schuchhardt, J., Wolf, 

J., Chen, W., and Selbach, M. (2011). Global quantification of mammalian 

gene expression control. Nature 473, 337–342. https://doi.org/10.1038/ 

nature10098.

15. Boisvert, F.-M., Ahmad, Y., Gierli�nski, M., Charrière, F., Lamont, D., 

Scott, M., Barton, G., and Lamond, A.I. (2012). A Quantitative Spatial Pro

teomics Analysis of Proteome Turnover in Human Cells. Mol. Cell. Prote

omics 11, M111.011429. https://doi.org/10.1074/mcp.M111.011429.

16. Mathieson, T., Franken, H., Kosinski, J., Kurzawa, N., Zinn, N., Sweet

man, G., Poeckel, D., Ratnu, V.S., Schramm, M., Becher, I., et al. 

(2018). Systematic analysis of protein turnover in primary cells. Nat. 

Commun. 9, 689. https://doi.org/10.1038/s41467-018-03106-1.

17. Doherty, M.K., Hammond, D.E., Clague, M.J., Gaskell, S.J., and Beynon, 

R.J. (2009). Turnover of the human proteome: determination of protein 

intracellular stability by dynamic SILAC. J. Proteome Res. 8, 104–112. 

https://doi.org/10.1021/pr800641v.

18. Woodside, K.H. (1976). Effects of cycloheximide on protein degradation 

and gluconeogenesis in the perfused rat liver. Biochim. Biophys. Acta 

421, 70–79. https://doi.org/10.1016/0304-4165(76)90170-7.

19. Cheatham, A.M., Sharma, N.R., and Satpute-Krishnan, P. (2023). 

Competition for calnexin binding regulates secretion and turnover of mis

folded GPI-anchored proteins. J. Cell Biol. 222, e202108160. https://doi. 

org/10.1083/jcb.202108160.

20. Herath, K., Bhat, G., Miller, P.L., Wang, S.-P., Kulick, A., Andrews-Kelly, 

G., Johnson, C., Rohm, R.J., Lassman, M.E., Previs, S.F., et al. (2011). 

Equilibration of 2H labeling between body water and free amino acids: 

Enabling studies of proteome synthesis. Anal. Biochem. 415, 197–199. 

https://doi.org/10.1016/j.ab.2011.04.031.

21. Rachdaoui, N., Austin, L., Kramer, E., Previs, M.J., Anderson, V.E., Kasu

mov, T., and Previs, S.F. (2009). Measuring proteome dynamics in vivo: 

as easy as adding water? Mol. Cell. Proteomics 8, 2653–2663. https:// 

doi.org/10.1074/mcp.M900026-MCP200.

22. Busch, R., Kim, Y.-K., Neese, R.A., Schade-Serin, V., Collins, M., Awada, 

M., Gardner, J.L., Beysen, C., Marino, M.E., Misell, L.M., and Hellerstein, 

M.K. (2006). Measurement of protein turnover rates by heavy water label

ing of nonessential amino acids. Biochim. Biophys. Acta 1760, 730–744. 

https://doi.org/10.1016/j.bbagen.2005.12.023.

23. Fanara, P., Banerjee, J., Hueck, R.V., Harper, M.R., Awada, M., Turner, 

H., Husted, K.H., Brandt, R., and Hellerstein, M.K. (2007). Stabilization 

of Hyperdynamic Microtubules Is Neuroprotective in Amyotrophic 

Lateral Sclerosis. J. Biol. Chem. 282, 23465–23472. https://doi.org/10. 

1074/jbc.M703434200.

24. Fanara, P., Wong, P.-Y.A., Husted, K.H., Liu, S., Liu, V.M., Kohlstaedt, L. 

A., Riiff, T., Protasio, J.C., Boban, D., Killion, S., et al. (2012). Cerebrospi

nal fluid–based kinetic biomarkers of axonal transport in monitoring neu

rodegeneration. J. Clin. Investig. 122, 3159–3169. https://doi.org/10. 

1172/JCI64575.

25. Drake, J.C., Peelor, F.F., Biela, L.M., Watkins, M.K., Miller, R.A., Hamil

ton, K.L., and Miller, B.F. (2013). Assessment of Mitochondrial Biogen

esis and mTORC1 Signaling During Chronic Rapamycin Feeding in 

Male and Female Mice. J. Gerontol. Ser. A 68, 1493–1501. https://doi. 

org/10.1093/gerona/glt047.

26. Previs, S.F., Fatica, R., Chandramouli, V., Alexander, J.C., Brunengraber, 

H., and Landau, B.R. (2004). Quantifying rates of protein synthesis in hu

mans by use of 2H2O: application to patients with end-stage renal dis

ease. Am. J. Physiol. Endocrinol. Metab. 286, E665–E672. https://doi. 

org/10.1152/ajpendo.00271.2003.

16 Cell Reports Methods 5, 101104, July 21, 2025 

Article
ll

OPEN ACCESS

https://doi.org/10.1016/j.crmeth.2025.101104
https://doi.org/10.1016/j.crmeth.2025.101104
https://doi.org/10.1126/science.aba7667
https://doi.org/10.1016/j.molcel.2013.08.002
https://doi.org/10.1016/j.cell.2007.03.042
https://doi.org/10.1146/annurev-biochem-060410-105307
https://doi.org/10.1146/annurev-biochem-060410-105307
https://doi.org/10.1016/j.tcb.2017.04.002
https://doi.org/10.1016/j.tcb.2017.04.002
https://doi.org/10.1126/science.1199784
https://doi.org/10.1126/science.1199784
https://doi.org/10.1074/mcp.M116.063230
https://doi.org/10.1074/mcp.M116.063230
https://doi.org/10.1073/pnas.2408697121
https://doi.org/10.1146/annurev-biochem-032620-104421
https://doi.org/10.1146/annurev-biochem-032620-104421
https://doi.org/10.1038/s41467-023-35795-8
https://doi.org/10.1074/mcp.M112.024547
https://doi.org/10.1074/mcp.M112.024547
https://doi.org/10.1016/j.molcel.2021.09.015
https://doi.org/10.1016/j.molcel.2021.09.015
https://doi.org/10.1016/j.stem.2018.02.004
https://doi.org/10.1016/j.stem.2018.02.004
https://doi.org/10.1038/nature10098
https://doi.org/10.1038/nature10098
https://doi.org/10.1074/mcp.M111.011429
https://doi.org/10.1038/s41467-018-03106-1
https://doi.org/10.1021/pr800641v
https://doi.org/10.1016/0304-4165(76)90170-7
https://doi.org/10.1083/jcb.202108160
https://doi.org/10.1083/jcb.202108160
https://doi.org/10.1016/j.ab.2011.04.031
https://doi.org/10.1074/mcp.M900026-MCP200
https://doi.org/10.1074/mcp.M900026-MCP200
https://doi.org/10.1016/j.bbagen.2005.12.023
https://doi.org/10.1074/jbc.M703434200
https://doi.org/10.1074/jbc.M703434200
https://doi.org/10.1172/JCI64575
https://doi.org/10.1172/JCI64575
https://doi.org/10.1093/gerona/glt047
https://doi.org/10.1093/gerona/glt047
https://doi.org/10.1152/ajpendo.00271.2003
https://doi.org/10.1152/ajpendo.00271.2003


27. Price, J.C., Holmes, W.E., Li, K.W., Floreani, N.A., Neese, R.A., Turner, S. 

M., and Hellerstein, M.K. (2012). Measurement of human plasma prote

ome dynamics with 2H2O and liquid chromatography tandem mass 

spectrometry. Anal. Biochem. 420, 73–83. https://doi.org/10.1016/j.ab. 

2011.09.007.

28. Wilkinson, D.J., Franchi, M.V., Brook, M.S., Narici, M.V., Williams, J.P., 

Mitchell, W.K., Szewczyk, N.J., Greenhaff, P.L., Atherton, P.J., and 

Smith, K. (2014). A validation of the application of D2 O stable isotope 

tracer techniques for monitoring day-to-day changes in muscle protein 

subfraction synthesis in humans. Am. J. Physiol. Endocrinol. Metab. 

306, E571–E579. https://doi.org/10.1152/ajpendo.00650.2013.

29. Miller, B.F., Wolff, C.A., Peelor, F.F., Shipman, P.D., and Hamilton, K.L. 

(2015). Modeling the contribution of individual proteins to mixed skeletal 

muscle protein synthetic rates over increasing periods of label incorpora

tion. J. Appl. Physiol. 118, 655–661. https://doi.org/10.1152/japplphy

siol.00987.2014.

30. Dufner, D.A., Bederman, I.R., Brunengraber, D.Z., Rachdaoui, N., Ismail- 

Beigi, F., Siegfried, B.A., Kimball, S.R., and Previs, S.F. (2005). Using 2 H 2 

O to study the influence of feeding on protein synthesis: effect of isotope 

equilibration in vivo vs. in cell culture. Am. J. Physiol. Endocrinol. Metab. 

288, E1277–E1283. https://doi.org/10.1152/ajpendo.00580.2004.

31. De Riva, A., Deery, M.J., McDonald, S., Lund, T., and Busch, R. (2010). 

Measurement of protein synthesis using heavy water labeling and pep

tide mass spectrometry: Discrimination between major histocompatibil

ity complex allotypes. Anal. Biochem. 403, 1–12. https://doi.org/10. 

1016/j.ab.2010.04.018.

32. Miller, B.F., Reid, J.J., Price, J.C., Lin, H.-J.L., Atherton, P.J., and Smith, 

K. (2020). CORP: The use of deuterated water for the measurement of 

protein synthesis. J. Appl. Physiol. 128, 1163–1176. https://doi.org/10. 

1152/japplphysiol.00855.2019.

33. Bruns, D.R., McNair, B.D., Peelor, F.F., Borowik, A.K., Pranay, A., Yusi

fov, A., and Miller, B.F. (2023). Skeletal and cardiac muscle have different 

protein turnover responses in a model of right heart failure. GeroScience 

45, 2545–2557. https://doi.org/10.1007/s11357-023-00777-7.

34. Wolff, C.A., Reid, J.J., Musci, R.V., Linden, M.A., Konopka, A.R., Peelor, 

F.F., Miller, B.F., Hamilton, K.L., and Bruns, D.R. (2020). Differential Ef

fects of Rapamycin and Metformin in Combination With Rapamycin on 

Mechanisms of Proteostasis in Cultured Skeletal Myotubes. 

J. Gerontol. A Biol. Sci. Med. Sci. 75, 32–39. https://doi.org/10.1093/ger

ona/glz058.

35. Prevosto, C., Usmani, M.F., McDonald, S., Gumienny, A.M., Key, T., 

Goodman, R.S., Gaston, J.S.H., Deery, M.J., and Busch, R. (2016). 

Allele-Independent Turnover of Human Leukocyte Antigen (HLA) Class 

Ia Molecules. PLoS One 11, e0161011. https://doi.org/10.1371/journal. 

pone.0161011.

36. Commerford, S.L., Carsten, A.L., and Cronkite, E.P. (1983). The distribu

tion of tritium among the amino acids of proteins obtained from mice 

exposed to tritiated water. Radiat. Res. 94, 151–155.

37. Currie, J., Ng, D.C.M., Pandi, B., Black, A., Manda, V., Pavelka, J., Lam, 

M.P.Y., and Lau, E. (2024). Improved determination of protein turnover 

rate with heavy water labeling by mass isotopomer ratio selection. Pre

print at bioRxiv. https://doi.org/10.1101/2024.06.04.597043. 
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REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, peptides, and recombinant proteins

D2O (99.9%) Cambridge Isotopes DLM-4-10

Thapsigargin SelleckChem S7895

mTeSR Plus STEMCELL Technologies 100–0276

DMEM/F12 Gibco 11320033

Fetal bovine serum Gibco A5209402

Phosphate buffered saline Cytiva BSS-PBS-1X6

RPMI-1640 Gibco 11875093

B-27 Supplement, minus insulin Gibco A3695201

B-27 Supplement Gibco 17504044

Y-27632 SelleckChem S1049

FGM-3 Cardiac Fibroblast Growth Medium-3 Bullet Kit Lonza CC-4526

Mass spectrometry grade trypsin Promega V5280

RIPA Lysis and Extraction Buffer Thermo 89901

Halt Protease and Phosphatase Inhibitor Cocktail Thermo 78430

Ammonium Bicarbonate Fisher Scientific AC393210010

Dithiothreitol Fisher Scientific PIA39255

Iodoacetamide Fisher Scientific PIA39721

0.1% Formic acid Fisher Scientific LS118-500

LC-MS grade anhydrous acetonitrile Thermo A9561

CHIR-99021 STEMCELL Technologies 72052

Doxorubicin SelleckChem S1208

Deposited data

Mass spectrometry data of calibration 

and heavy water labeling in normal and 

stressed human AC16 cells

This study, Currie et al. 82 ProteomeXchange: PXD048321

Mass spectrometry data of hiPSC under 

dynamic heavy water labeling

This study ProteomeXchange: PXD060287

Mass spectrometry data of hiPSC-CM secretome This study ProteomeXchange: PXD060295

Mass spectrometry data of protein abundance 

profiles during hiPSC differentiation

Lau et al. 62 ProteomeXchange: PXD013426

Mass spectrometry data of AC16 cells 

labeled with dynamic SILAC

Currie et al. 40 ProteomeXchange: PXD038054

Experimental models: Cell lines

AC16 Human Cardiomyocyte Millipore SCC109 RRID: CVCL_4U18

hiPSC mono-allelic mEGFP-tagged 

MYL7 WTC iPSC line (tag at C-term)

Allen Institute/Coriell AICS-0052-003 RRID: CVCL_UD15

Primary human cardiac fibroblasts University of Colorado 

Anschutz Medical Campus

COMIRB Protocol #01-568

Software and algorithms

R The R Project for Statistical 

Computing

https://www.r-project.org

Bioconductor Bioconductor Project https://www.bioconductor.org

Comet (v.2022.01) Eng et al. 83 https://github.com/UWPR/Comet

UniProt The UniProt Consortium 84 https://uniprot.org
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EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Study approval and participants

All experiments utilizing human tissue were performed in accordance with COMIRB Protocol #01–568 at the University of Colorado 

Anschutz Medical Campus. Donor information was de-identified.

Human AC16 cell culture

Human AC16 cells (Millipore) were cultured in monolayer on tissue culture plates with DMEM/F12 medium (Gibco) supplemented with 

10% fetal bovine serum (FBS) (Gibco) at 37◦C, 5% CO2.

Human induced pluripotent stem cell culture

AICS-0052-003 hiPSC (mono-allelic C-terminus mEGFP-tagged MYL7 WTC-11; Allen Institute Cell Collection) line was acquired 

from Coriell Institute and seeded onto Geltrex (Gibco) coated 6 well plates and maintained in mTesR Plus basal media with Supple

ment (STEMCELL) media at 37◦C, 5% CO2.

Human primary cardiac fibroblast culture

As previously described,89 primary human CFs were isolated from left ventricular tissue obtained from non-failing donor hearts not 

suitable for transplant by enzymatic digestion (100 mg collagenase type 2 [Worthington Biochemical Corporation]; 1 mg trypsin 

[Worthington TRL3]; and 15 mg bovine serum albumin [Sigma A5611] reconstituted in 40 mL of DMEM. Fibroblasts were maintained 

in FGM-3 Cardiac Fibroblast Growth Medium 3 BulletKit media (Lonza CC4526) and cultured to Passage 3. Fibroblasts were plated in 

6-well plates at 80,000 cells/well and cultured for 2 days in FGM-3 medium at 37◦C, 5% CO2 in low serum Fibroblast Basal Medium 

(CC-3131).

METHOD DETAILS

Human AC16 cell labeling calibration standards

The AC16 calibration standards data were initially generated for our parallel work to evaluate the effect of isotopomer selection on 

fractional synthesis calculation,37 and here utilized for an independent study goal. AC16 cells were cultured as described above. For 

labeling, the basal medium was diluted with either 6% vol/vol D2O (heavy labeled population) or 6% H2O (control population) at 37◦C, 

5% CO2. The cells were maintained in this medium for 3 passages, each passage with a split ratio of 1:8. This growth was estimated 

to constitute approximately 9 doublings of the cell populations. The cells were harvested by trypsinization, pelleted, washed once 

with phosphate buffered saline, and pelleted again before snap freezing in liquid nitrogen and storing at − 80◦C. At the time of pro

cessing each pellet was resuspended in 1 mL of RIPA buffer (Thermo Scientific) supplemented with Halt Protease and Phosphatase 

Inhibitor Cocktail (Thermo Scientific). Proteins were extracted with sonication in a Bioruptor Pico (Diagenode) with settings 10 × 30 s 

on 30 s off at 4◦C. Insoluble debris was pelleted and removed from all samples by centrifugation at 14,000 ×g, 5 min.

Protein concentration of all samples was measured with the Rapid Gold BCA (Pierce) assay. Cell lysates from the D2O and H2O 

media populations were then combined in a labeling series expressed as the proportion of protein that was labeled with heavy 

water: 0, 0.125, 0.25, 0.375, 0.5, 0.625, 0.75, 0.875 and 1. The samples were trypsin digested using a modified version of the fil

ter-aided sample preparation approach as previously described. A total of 50 μg protein per sample in 250 μL 8 M urea was loaded 

onto Pierce Protein Concentrators PES, 10K MWCO (Thermo Scientific) pre-washed with 100 mM ammonium bicarbonate (ABC). 

The samples were again washed with 8 M urea to denature proteins and remove SDS. The samples were washed with 300 μL 

100 mM ABC twice. The samples were then reduced and alkylated with final concentrations 5 mM dithiothreitol (DTT) and 18 mM 

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

DeepLoc (v.2.0) Thumuluri et al. 85 https://services.healthtech.dtu.dk/ 

services/DeepLoc-2.0/

Percolator (v.3.0) The et al. 86 https://crux.ms/

MSFragger Yu et al. 87 https://msfragger.nesvilab.org

Philosopher (v.4.8.1) da Veiga Leprevost et al. 88 https://philosopher.nesvilab.org/

Riana (v.0.8.0) This study, Hammond et al. 73

and Currie et al. 82

https://github.com/ed-lau/riana

https://doi.org/10.5281/zenodo.15643986

Degronopedia Szulc et al. 51 https://degronopedia.com/

Isotopomer visualizing webapp (v.0.1) This study https://heart.shinyapps.io/D2O_Isotope/

https://doi.org/10.5281/zenodo.15652344
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iodoacetamide (IAA) for 30 min at 37◦C in the dark. DTT and IAA were removed with centrifugation and the samples were washed 3×

with 100 mM ABC. Samples were digested atop the filters overnight at 37◦C with mass spectrometry grade trypsin (Promega) at a 

ratio of 1:50 enzyme:protein. The following day samples were cleaned with Pierce C18 spin columns (Thermo Scientific) according to 

the manufacturer’s protocol. Eluted peptides were dried under vacuum and redissolved resuspended in 0.1% (vol/vol) formic acid.

The samples were analyzed on a Thermo Q-Exactive HF quadrupole-Orbitrap mass spectrometer coupled to a nanoflow Easy-nLC 

UPLC with the Thermo EasySpray electrospray ionization source. Peptides were separated with a PepMap RSLC C18 column 

75 μm × 15 cm, 3 μm particle size (Thermo Scientific) with a 90-min gradient from 0 to 100% pH 2 solvent B (0.1% formic acid in 

80% vol/vol LC-MS grade acetonitrile). The mass spectrometer was operated in data-dependent acquisition (DDA) mode with scans 

between m/z 200 and 1650 acquired at a mass resolution of 60,000. The maximum injection time was 20 ms, and the automatic gain 

control was set to 3e6. MS2 scans of the 15 most intense precursor ions with charge states of 2+ to 5+ were acquired with an isolation 

window of 2 m/z units, maximum injection time 110 ms, and automatic gain control of 2e5. Fragmentation of the peptides was by 

stepped normalized collision-induced dissociation energy (NCE) of 25–27. Dynamic exclusion of m/z values was used with an 

exclusion time of 30 s. The DDA mass spectrometry data were searched against UniProt Swiss-Prot database84 retrieved using 

Philosopher v.4.8.188 on 2023-06-27 with added contaminants using Comet v.2022.0183 including the following parameters: decoy_ 

search = 1; peptide_mass_tolerance: 10.00 ppm; num_enzyme_termini = 1; isotope error: 0/1/2/3; fragment_bin_tol = 0.02; frag

ment_bin_offset = 0.0. Search results were post-processed using Percolator (crux-4.1 distribution)86 with the following options: 

–decoy-prefix DECOY_; –overwrite T; –maxiter 10. Peptide identifications at FDR adjusted q value of greater than 0.01 were 

excluded. Isotopomer intensity of the m0, m1, m2, m3, m4, and m5 peaks was extracted using Riana v.0.8.0 integrate73 with the 

following settings: -q (q-value) 0.01, -r (retention time in minutes) 0.25 -m (mass tolerance in ppm) 15.

Fractional synthesis calibration cells for hiPSC and hiPSC-CM

New calibration standards for hiPSC and hiPSC-CM were generated in this study. Briefly, AICS-0052-003 hiPSC were cultured and 

passaged as described above. The basal medium but not supplement was diluted with either 6% D2O (heavy labeled population) or 

6% H2O (control population), and the cells were cultured at 37◦C, 5% CO2 with daily media changes. At 80% confluency, cells were 

passaged at 1:6 using EDTA before resuspension in media supplemented with 10 μM Y-27632 (SelleckChem), for a total of 4 pas

sages (equivalent to ≥10 doublings). The cells were then harvested by EDTA, processed, and analyzed by mass spectrometry as 

above.

To produce calibration cells for hiPSC-CM, fully labeled or unlabeled hiPSC were replated into Geltrex coated 12 well plates at a 

density of 4.5 × 105 cells/well and daily media changes continued until the cells reached 80% confluency, day 0 of cardiac differen

tiation. The hiPSC were differentiated into hiPSC-CM using a small molecule-based GSK-3β inhibition/Wnt inhibition protocol.90

Briefly, on day 0, cell media was replaced with 2 mL/well RPMI supplemented with B-27 minus insulin (Gibco) and 6 μM 

CHIR99021 (STEMCELL); on day 2, the media was changed to 2 mL/well RPMI+B-27 minus insulin. On day 3, the media was 

changed to 2 mL/well RPMI+B27 without insulin supplemented with 5 μM IWR-1-Endo (STEMCELL). On day 7, the media was 

changed to 2 mL RPMI+B27 with insulin. Differentiation was confirmed via visualization of morphology, spontaneous contraction 

of cells, and imaging of the GFP tagged MYL7/MLC-2a. Media was refreshed every other day with RPMI+B27 with insulin until 

day 14. Attached hiPSC-CMs were washed twice with PBS before incubating with 0.5 mL per well of TrypLE Express (1x, Thermo 

Fisher) for 11 min. An additional 1.5 mL PBS was added to dilute the TrypLE and the cells were triturated until fully detached. Cells 

were pelleted by centrifugation at 300 ×g for 3 min, washed with PBS before repelleting, and stored at − 80◦C until protein extraction. 

The samples were then processed and analyzed by mass spectrometry as above.

Prediction of deuterium labeling sites in cell culture

Because D2O labeling typically uses enrichment of 10% or lower excess deuterium, the resulting isotope pattern of labeled 

proteins is complex and overlaps with the unlabeled protein. Moreover, whereas in SILAC labeled amino acids are pre-synthe

sized with fixed mass shifts, upon D2O labeling, each amino acid residue has a characteristic number of deuterium-accessible 

labeling sites based on their biochemistry, hence the extent of mass shift a peptide exhibits upon labeling is sequence-depen

dent. Analysis therefore requires knowing the number of deuterium-accessible labeling sites in each amino acid, Saa. This in

formation may be learned from asymptotically labeled peptides or nested fitting over many peptides, but this is not always prac

tical to achieve (e.g., in short-term labeling or labeling of only few time-points) and may accrue additional greater fitting error, 

therefore calling for a general method to calculate the fractional synthesis of any peptide sequence irrespective of label 

duration.

To recover the fraction of newly synthesized protein θ (also referred to as f in the literature. We avoid the use of f due to potential 

confusion with other fractional or functional notations), isotope incorporation is analyzed as the change in the ratio between the 

monoisotopic peak over the complete isotope profile (A0) across labeling time-points (or in the case of the calibration experiment, 

across known experimental proportions of ground-truth θ). As fractional synthesis 0 ≤ θ ≤ 1 increases, A0(θ) decreases linearly 

from the initial position, toward the asymptote as determined by the excess deuterium enrichment (p) and number of accessible la

beling sites of the peptides, Spep (sometimes denoted as n or NEH in the literature; Spep is used here to avoid confusion with number of 

replicates or the number of amino acids per peptide.)
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The initial A0 (i.e., unlabeled, A0(θ = 0)) of a peptide can be calculated from natural isotopic distribution. The fully labeled A0(θ = 1) of 

the peptide is calculated from the naturally occurring A0, the total number of deuterium exchange sites on the peptide Spep, and the 

deuterium relative isotope abundance p where p = 0.06 in the 6% D2O experiments:

A0(1) = A0(0) ⋅ (1 − p)
Spep (Equation 1) 

This could be refined by considering naturally occurring deuterium,91 but the background deuterium level (0.0001157098) is negli

gible compared to p and is ignored here.

In the calibration standard cells, Spep can be calculated from Equation 1 by considering the proportional abundance of the m0 peak, 

which contains no heavy isotopes in any atom center. This proportion decreases linearly as the proportion of labeled protein scales 

from 0 to 100%.

The number of deuterium accessible labeling sites in each amino acid, Saa, in human cell culture can be predicted by two machine 

learning strategies. In the first method, a linear regression model is used to find Saa from Spep:

Spep =
∑

aa

( Saa ⋅ Naa) (Equation 2) 

Peptide series from the calibration standards that were identified at Percolator FDR 1% and quantified in all 9 mixture proportions 

were included. The peptides were then further filtered to include those with a linear fit (R2 > 0.9) of mixture proportion θ against A0. 

Training is done using the LinearRegression model in scikit-learn,92 with the settings fit_intercept = False, positive = True. following 

80/20 train-test split with 1337 peptides in the training set and 335 in the test set.

In the second strategy (direct prediction of isotopomer profiles), the empirical isotopic ratios as measured in the 25.0%, 50.0%, 

75.0%, and 100.0% proportion of fully labeled cell lysates were used as targets of training. The full isotopomer profile of an unlabeled 

peptide is calculated using the isotope fine structure calculation algorithm IsoSpec2 (ref. 38) to resolve exact isotopologues of a peptide 

given its chemical composition. The isotope envelope of a labeled peptide is then approximated by performing the calculation with a 

modified elementary composition table to include a new element H* (exchangeable hydrogen) with 1 – p probability of having mass 

1.007825, and p probability of having mass 2.014102. A train-test split of test size 0.2 was performed, resulting in 7,200 samples (pep

tide–proportion combination) in the train sets and 1,800 samples in the test sets. We then used the differential evolution (DE) algorithm in 

scipy.optimize93 to perform global optimization varying the labeling site of each amino acid residue as input to IsoSpec2 and then mini

mizing the median absolute scaled errors (m.a.s.e., calculated as median absolute error divided by median absolute deviation) between 

the IsoSpec2 predicted isotopic cluster and the actual empirical ratios of m0/m1, m0/m2, m1/m2, and m1/m3 in each of the four mixture 

proportion experiments. The differential evolution parameters are tol: 1e-5, disp: True, polish: False, maxiter: 2500, seed: 42. Lower and 

upper bounds of labeling sites were set between 0.08 and the number of hydrogen atoms per amino acid residue, respectively.

Acid hydrolysis of AC16 lysate and direct infusion mass spectrometry

To experimentally validate the predicted labeling sites in cell culture, non-labeled (i.e., 0% D2O) and fully labeled (i.e., nine doublings 

under 6% D2O) AC16 cell lysates (∼200 μg) were desalted and cleaned up using Zeba desalting columns (Thermo) with 7 kDa mo

lecular weight cutoffs (MWCO). The samples were then acid hydrolyzed with 1 mL of 6 M of HCl at 110◦C for 48 h in a vacuum hy

drolysis tube filled with N2 to prevent oxidation. The hydrolysate was removed under a steady stream of N2 in a water bath at 90◦C and 

then dried using a SpeedVac evaporator (Thermo). The dried samples were reconstituted with 300 μL of methanol/water (50:50) with 

1% vol/vol formic acid, and directly infused with a syringe into a Q-Exactive HF Orbitrap mass spectrometer through a Nanospray 

Flex ion source. The following mass spectrometry settings were used to acquire MS1 signal for the hydrolyzed amino acids: ESI 

voltage of +3 kV, injection flow rate of 3 μL/min, mass range of m/z 50–250, scan time of 1 min, FT resolution of 30,000, 60,000, 

and 120,000, capillary temperature of 275◦C, AGC Target of 1e6, max ion time of 50 ms, micro scan of 1 count.

AC16 and hiPSC culture for dynamic D2O labeling experiments

For the baseline and stressed AC16 cells, AC16 cells were grown in monolayer as above. While in log phase growth, cells were intro

duced to 6% D2O with or without 1 μM thapsigargin for 16 to 24 h. For hiPSC, cells were labeled in 6% D2O in mTeSR Plus and then 

collected at 9 time-points at 0, 1, 2, 3, 4, 6, 8, 12, and 24 h after the start of labeling. The cells were then harvested, and processed for 

DDA mass spectrometry analysis as described above.

For hiPSC time-course labeling, AICS-0052-003 hiPSC were passaged as above. Once the cells reach 50% confluency, mTeSR 

Plus media diluted with 6% D2O (heavy labeled population) or 6% H2O (control population) was introduced to the cells for the duration 

of each time interval at 0, 1, 2, 3, 4, 6, 8, 12 and 24 h as described in the text. At the end of each time interval, the labeling medium was 

aspirated, the cells were washed with PBS, and then collected with dissociation media (0.5 mL EDTA in PBS), and snap-frozen imme

diately. Proteins were then extracted using RIPA buffer with BioRuptor sonication as described above, then digested and analyzed 

with DDA mass spectrometry.

Directed differentiation of hiPSC for dynamic D2O labeling experiments

For hiPSC differentiation toward mesoderm/mesendoderm specification, cells are placed under CHIR-99021 to induce prolonged 

GSK3β inhibition and Wnt activation. ACIS-52 hiPSC were plated onto a 6-well plate coated with geltrex in mTesR Plus basal media 
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with Supplement (STEMCELL) media and 10 μM Y-27632 (SelleckChem). Media changes were performed every day with mTesR Plus 

basal media with Supplement (STEMCELL) media. At 80% confluency, cells were split with TrypLE Select Enzyme (10X, Thermo 

Fisher) onto geltrex coated 12-well plates at 0.2 × 106 cells/well in mTesR Plus basal media with Supplement (STEMCELL) media 

and 10 μM Y-27632 (SelleckChem). Media changes were performed every day with mTesR Plus basal media with Supplement 

(STEMCELL) media. At 80% confluency, the medium was removed and replaced with 2 mL/well RPMI-1640 supplemented with 

B-27 minus insulin (Gibco), 6 μM CHIR99021 (STEMCELL), and 6% vol/vol D2O (Cambridge Isotope), except for time-point 0. At 

each time-point of 0, 1, 2, 3, 4, 6, 8, 12 and 24 h, media was aspirated from cells and cells were collected with 100 μL TrypLE Select 

Enzyme (10X, Thermo Fisher) for 2 min, then quenched with 500 μL RPMI-1640. For each replicate in each condition, 2 wells were 

combined, pelleted at 200 ×g for 5 min, rinsed 1× with 1 mL PBS, pelleted once more at 200 ×g for 5 min and immediately flash 

frozen. Protein extraction, digestion and peptide desalting were performed using the same protocol described above.

The digested peptides were resuspended in 0.1% formic acid (vol/vol) and separated using a Vanquish Neo UHPLC system 

(Thermo Fisher Scientific) on an Easy-Spray analytical column (ES900 C18, 75μm × 150 mm, 3 μm) with a 60-min gradient. Solvent 

A was 0.1% formic acid in LCMS-grade water and solvent B was 0.1% Formic acid in 80% LCMS-grade acetonitrile. The LC-system 

was coupled to an Orbitrap Exploris 480 (Thermo Fisher Scientific) operating in positive mode with the spray voltage at 2 kV and ion 

transfer tube temperature of 275◦C. Full-mass spectra were acquired from 350 to 1650 m/z at 60,000 resolution with an AGC target at 

300% and maximum ion injection time set to auto. The mass spectrometer was operated in DDA mode, selecting precursors within a 

charge state of 2–6 and minimum intensity of 3 x 102. The top 20 precursors were subsequently selected with a 2 m/z isolation win

dow for HCD fragmentation with NCE set at 30%. The resolution was set to 15,000 with an AGC target at 200%, maximum ion in

jection time of 26 ms and dynamic exclusion of 45 s. The data were then analyzed as above.

For directed differentiation toward cardiac progenitors, data from our previous work62 were retrieved from ProteomeXchange un

der PXD013426. Briefly, hiPSC from three donor lines were directed to differentiate using a small molecule based GSK3β inhibition– 

Wnt inhibition protocol, first toward mesoderm (day 0 to day 2 post differentiation) and then toward cardiac progenitor stage (day 2 to 

day 6), and protein expression was sampled daily.

Protein turnover kinetics analysis of mass spectrometry data

Isotopomer intensity was extracted using Riana v.0.8.0 to extract the intensity over time of the m0, m1, m2, m3, m4, and m5 peaks as 

described above. For each peptide, Spep is calculated from the predicted Saa values (Table S1) using Equation 2. The plateau enrich

ment of a peptide can then be predicted using a modified version of Equation 1, that is, for A0(t = ∞). The fractional synthesis of a 

peptide at time t can then be calculated as:

θt = (A0(t) − A0(0)) = (A0(∞) − A0(0)) (Equation 3) 

The time-series of fractional synthesis at one or more experimental time-points was then fitted to a simple exponential kinetic model 

(Equation 4) to obtain the best-fit turnover rate constant (k) to explain the time-series, using the optim function in R.

θt = 1 − e− kt (Equation 4) 

We note that because the determined D2O labeling sites enable the asymptote of mass shifts to be calculated, the label incorpo

ration kinetics of a single protein can be defined by a single variable, namely the apparent turnover rate constant (k) of the protein. This 

allows rise-to-plateau kinetics to be analyzed from as few as one time-point, provided the sampling time-point is within the informa

tive region of the curve (i.e., an appreciate amount of isotope has been incorporated, and the curve has not plateaued).76,94 In other 

words, the approach is compatible with both single-point sampling and time-course designs (with multiple data-points across mul

tiple values of t). Although single-point sampling approaches are challenged by the high variability of derived turnover rates, it is useful 

for evaluating whether the isotope envelope is quantified accurately to reflect expected median half-life of proteins. For the AC16 

single time-point labeling analysis, no goodness-of-fit can be acquired. Therefore the best-fit turnover rates of the top 6 peptides 

ranked by intensity were used to calculate the median as the protein-level turnover rate, and proteins quantified with at least 3 pep

tides and with a relative median absolute deviation (calculated as median absolute deviation divided by median of the turnover rates) 

of 33% or less were accepted.

Compared to single-point designs, time-course experiments enable a greater dynamic range of turnover rates to be measured, 

including fast turnover proteins that may have plateaued prior to sampling time. Moreover, the use of non-linear least square 

curve-fitting allows data filtering based on goodness-of-fit thresholds to remove problematic peptides that do not conform to the 

kinetic models (e.g., from low abundance peptides) (see below). For time-course labeling, goodness-of-fit is determined by the re

sidual sum of squares (RSS) and total sum of squares (TSS) of the kinetic model curve-fitting:

R2 = 1 −
RSS

TSS
(Equation 5) 

A peptide-level R2 ≥ 0.8 is accepted as described in the text. All fractional synthesis data for all constituent peptides that passed 

this filter are then collected for a single protein-level fitting, where the sums of square weighted to a normalized log intensity of the 

peptide are minimized by the optim function in R. A protein-level weighted R2 ≥ 0.8 is accepted as described in the text.
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Note that the reported turnover rate constants (k) represent apparent rates of isotope incorporation and do not distinguish the con

tributions from cell division rates, although this can be readily corrected in the kinetic model by subtracting the doubling rate from the 

rate constant.

Secretome analysis in D2O labeled hiPSC-CM

AICS-0052-003 hiPSC (mono-allelic C-terminus mEGFP-tagged MYL7 WTC-11; Allen Institute Cell Collection) were expanded and 

differentiated into hiPSC-CM as above. Media was refreshed every other day with RPMI+B27 with insulin until day 41, at which time 

the media was supplemented with 6% vol/vol D2O (Cambridge Isotope), and 1 μM doxorubicin (SelleckChem) or vehicle (DMSO). 

24 h later, the media was collected and replaced with media supplemented with 6% vol/vol D2O. The collected conditioned media 

was centrifuged for 5 min at 300 ×g and 5 min at 14,000 ×g. Spun media was stored at − 80◦C. Another 24 h later (48 h of labeling 

total), the media was collected again and centrifuged as described. At the same time, the intracellular samples were collected and 

reduced, alkylated, and digested using an on-filter digestion protocol as described above.

To analyze secretome content, 300 μL of spun conditioned media per sample was depleted using the Seer Proteograph XT 

workflow (Seer, Inc.) utilizing two distinct nanoparticle (NP) mixtures (NPA, NPB). NP protein coronas were reduced, alkylated, 

and digested with Trypsin/Lys-C to generate tryptic peptides for LC-MS analysis. Digested peptides were desalted, eluted in a 

high-organic buffer into a deep-well collection plate, and quantified. In hiPSC-CM experiments, cleaned peptides were reconsti

tuted in 0.1% formic acid to a final concentration of 0.0325 μg/μL and 0.116 μg/μL from NPA and NPB, respectively. 3 μL of pep

tides per sample were separated with online low-pH reversed-phase LC (PepMap C18 column, 3-μm particle, 100 Å pore; 

75 μm × 15 cm; Thermo Fisher Scientific) via the EASYnLC 1200 system coupled to the Easy-Spray ion source (Thermo Fisher 

Scientific) at 300 nL/min with a 90-min gradient: 0–75 min: 0 to 30% B; 75–80 min: 30 to 70% B; 80–85 min: 70%–100% B; 

85–90 min: 100% B (solvent A: 0.1% v/v formic acid; solvent B: 0.1% formic acid in 80% v/v acetonitrile). Mass spectra were ac

quired on a Thermo Scientific Q-Exactive HF Orbitrap mass spectrometer with the following settings: polarity, positive; data inde

pendent acquisition (DIA); MS resolution, 120,000; maximum ion injection time, 230 ms; MS automatic gain control (AGC) target, 

3e6; normalized collision energy (NCE), 30; MS2 resolution, 30,000; MS2 maximum ion injection time, 45 ms; isolation window, 11 

m/z; and MS2 AGC target, 1e6. DIA mass spectrometry data was searched using MSFragger v.3.887 using typical DIA settings 

against UniProt Swiss-Prot database84 retrieved using Philosopher v.4.8.188 on 2023-06-27 with added contaminants. The search 

results were post-processed using MSBooster v.1.1.695 followed by Percolator v.3. Peptide identification was accepted at 1% 

Percolator FDR. Mass isotopomer intensities were quantified using Riana and protein turnover rate constants calculated as 

described above.

Human primary fibroblast protein turnover kinetics and secretome analysis

Human primary fibroblasts were derived and cultured as described above, and subsequently cultured for 48 h in low serum Fibroblast 

Basal Medium (CC-3131) containing 6% D2O. This conditioned media was collected and processed with Seer Proteograph XT as 

above. Cleaned peptides from both NP mixtures were reconstituted in 0.1% formic acid to a final concentration of 0.1025 μg/μL. Re

suspension concentrations were selected based on available mass of the digested peptides. In parallel, the intracellular samples 

were harvested and digested as described above. The samples were then analyzed using DIA mass spectrometry as above. Because 

primary cells are replicatively limited, they can only be cultured for a finite number of passages prior to senescence. We therefore did 

not pursue a fully labeled calibration standard, and instead opted to apply the deuterium accessible site values from hiPSC-CM to

ward hCF data analysis.

Additional data analysis

Subcellular localizations were predicted using DeepLoc v2.085 or UniProt84 annotations. Over-representation analysis and GSEA 

were performed using the ReactomePA96 and fgsea packages in R and using StringDB.97 Skewness of protein turnover rate distri

butions of secreted protein is calculated as Pearson’s moment coefficient of skewness, and the bootstrap significance is calculated 

as the proportion of samples with more skewed distributions among 1e6 random samples with replacement of the entire dataset, with 

sample sizes matched to the annotations being compared.

For degron set enrichment analysis, we retrieved 1,810 degron motifs from Degronopedia (2024-02-01 release).51 The degron 

motifs were curated on the Degronopedia server from multiple sources and included N-terminal, C-terminal, and internal degron 

motifs, that correspond to known E3 ubiquitin ligase targets as well as short linear motifs in disordered regions.51 The retrieved 

degron motifs are in regular expression, e.g., ‘‘R[A-Z]{2}G$’’ for the human C-terminus RxxG degron, which allowed us to loop 

through each motif and search for instances of motif matches within all quantified proteins in the.fasta protein database, using 

the str_count() function in the stringr package in R. We then filtered for 105 degron motifs that matched to 10 or more quantified 

proteins. Each degron motif, and the proteins with quantified turnover rates that it is found in, are then written in an MSigDB GMT 

format text file. Finally, we use the GMT file and the sorted protein list in descending turnover rates to perform GSEA, using the 

fgsea package in R, which looks for significant enrichment of each set of proteins associated with a degron in the ranked protein 

list. An FDR adjusted permutation p value of 0.1 is considered significant, and the degron and the associated leading edge pro

teins driving the enrichment score were retrieved.
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Protein energetic cost is calculated using the energy cost per amino acid (ECPA) method with human/heterotroph H11 cost 

values.50 Protein copy number per cell is calculated using the proteomic ruler98 method from the MS1 label free quantity of peptides 

in labeled and unlabeled samples, integrated from m0 to m5 using Riana:

[P] = protein MS signal ×
NA

MW
×

6:5 pg

histone MS signal
(Equation 6) 

To verify the calculations, the derived protein copy numbers are compared with prior per-protein values in mouse embryonic fibro

blasts 14 and histone proportion per cell. 98 The hiPSC calculations indicate 4.5% [4.1–4.8%] of histone mass as a total protein mass, 

roughly comparable to prior estimates in cancer cells (∼2–4%). The total protein mass and cell mass predicted from the proteomic 

ruler are also in range with values predicted from geometry. The proteomic ruler produces an estimate of hiPSC cell mass of 826 [736– 

916] ng (95% c.i.). For estimation from cell size, we assume hiPSC to be spherical cells between 10 and 12 μm in diameter. Dry mass 

is assumed to be 30% of cellular mass and protein mass 60% of total dry mass based on literature estimates.99 Assuming a cellular 

density of 1.06 g/cm3 yields cell mass of 0.555–0.959 ng, which is roughly in line with the proteomic ruler numbers.

QUANTIFICATION AND STATISTICAL ANALYSIS

Isotopomer intensity was extracted using Riana v.0.8.0 to extract the intensity over time of the m0, m1, m2, m3, m4, and m5 peaks as 

described above. Kinetics curve-fitting is performed using the optim function in R. Individual time-point samples contribute to the 

curve independently and are considered replicates. Peptide-level and protein-level R2 ≥ 0.8 are considered well fitted. For differential 

protein abundance analysis, the linear model and empirical bayes method in limma (Bioconductor v.3.21)100 is used and an FDR- 

adjusted p value of 0.01 is considered significant. For degron/gene set enrichment analyses, an FDR adjusted permutation p value 

of 0.1 is considered significant, and the degron/gene sets and the associated leading edge proteins driving the enrichment score are 

reported. Full details for proteomic quantification and calibration are reported in sections above.
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