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Abstract

Human induced pluripotent stem cells (iPSCs) provide a renewable supply of
patient-specific and tissue-specific cells for cellular and molecular studies of
disease mechanisms. Combined with advances in various omics technologies,
iPSC models can be used to profile the expression of genes, transcripts,
proteins, and metabolites in relevant tissues. In the past 2 years, large panels
of iPSC lines have been derived from hundreds of genetically heterogeneous
individuals, further enabling genome-wide mapping to identify coexpression
networks and elucidate gene regulatory networks. Here, we review recent
developments in omics profiling of various molecular phenotypes and the
emergence of human iPSCs as a systems biology model of human diseases.
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Induced pluripotent
stem cells (iPSCs):
cells reprogrammed
from adult
differentiated cells into
a naive state that are
subsequently capable
of infinite renewal in
culture and
differentiation into
multiple cellular
lineages

Differential
expression analysis:
comparison of gene,
protein, or metabolite
molecules to identify
species with
statistically significant
differences in
abundance between
two conditions

1. INTRODUCTION

The advent of induced pluripotent stem cells (iPSCs) has transformed biomedical research (1)
by allowing primary cells from individual donors to be reprogrammed to a pluripotent state that
is virtually identical to embryonic stem cells (2). Reliable methods exist to dedifferentiate adult
donor cells into iPSCs with minimal mutations and genome instability (3) and to further direct
their differentiation into human tissue types. Current protocols can create with high efficiency
and purity cells in the nervous system (4), the heart (5, 6), the liver (7), the vasculature (8, 9), and
other tissues. Further work has refined differentiation protocols to derive precise cellular subtypes,
including motor versus sensory neurons (4, 10) and ventricular cardiac myocytes versus pacemaker
cells (11–13). These breakthroughs have sparked novel preclinical applications of iPSCs. With
the en masse production of human iPSC-derived cells, preclinical cell-based or cell-free thera-
pies have been used to restore tissue function by directly administering the cells or their secreted
factors into sites of injury (14, 15). In parallel, iPSC-derived cells are used as patient surrogates
in molecular screening to discover new therapeutic compounds (16, 17) or to assess pharmacoki-
netics and safety (18, 19). But arguably, the most transformative applications of iPSCs have been
in modeling the origin and development of human diseases (20, 21). With genetic diseases in
particular, iPSCs carrying the exact genetic backgrounds of patients offer an attractive route to
study diseased tissues directly. Patient-specific iPSC-derived cells have been studied in cardiomy-
opathies (21–24) and arrhythmias (25–27), pulmonary hypertension (28), and neurodegenerative
disorders (29, 30), and they have led to new insights into the cellular processes disrupted in these
diseases.

In parallel, during the past decade advances in next-generation sequencing and mass spec-
trometry technologies have fundamentally altered how biological molecules are interrogated
on a large scale (31). RNA sequencing (RNA-seq) has become ubiquitous for measuring the
output of gene expression in experimental models (32, 33), and with recent technologies, it
has been extended to measuring full-length transcripts (34) or gene expression in single cells
(35, 36). Mass spectrometry–based proteomics, in turn, allows large-scale quantification of
protein expression (37, 38), protein posttranslational modifications (39, 40), and metabolite
profiles (41). Transcript expression, proteins, metabolites, and other intermediary molecular
phenotypes provide mechanistic information that connects genes to traits of interest (42–44)
such that potential pathogenic mechanisms can be broadly discovered in an unbiased manner
from differential expression analysis in disease models. The availability of large-scale omics
data has spurred systems biology approaches, which aim to connect observed phenotypes to
omics changes at scale such that their underlying regulatory networks can be revealed (43,
45).

Owing to their ability to reproduce individual-specific and tissue-specific molecular expression
profiles, iPSC models have proven to be particularly suited for omics experiments (46). One
advantage is their ability to circumvent the inaccessibility of primary tissues, especially cardiac and
neuronal cells, so that representative transcripts, proteins, and metabolites can be procured for
high-throughput quantitative experiments. Discoveries can further be tested in identical live cells,
such as by using gene editing techniques to introduce variants (47, 48) (Figure 1). More recently,
omics approaches in iPSCs have been extended to large donor cohorts, in which the natural
variability in human populations is leveraged to uncover the genetic architecture connecting
natural variants to observable traits (49, 50).

396 Lau · Paik ·Wu



D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lre
vi

ew
s.

or
g.

  G
ue

st
 (

gu
es

t)
 IP

:  
10

4.
28

.4
8.

72
 O

n:
 W

ed
, 0

2 
O

ct
 2

02
4 

18
:5

8:
34

PM14CH16_Wu ARI 10 December 2018 12:26

1

2

3

5
Analyze omics and functional data
and identify molecular changes

f(x)

Population of iPSC donors

Reprogram to iPSCs

Directed differentiation

• Individual phenotypes and clinical traits
  (e.g., ethnicity, body mass index, cardiac events)

• Individual genotypes in
  population of interest

• Variations from culture conditions
  and reprogramming methods

• Individual differences preserved in
  genotypes and gene expressions

• Provides live cell materials for
  functional and imaging studies

• Epigenetic and proteomic profiles from
  individuals are tested in relevant cell types

4a Measuring cellular phenotypes 4b Measuring molecular phenotypes

Excitable cells
• Ca2+ handling
• Action potential

Contractile cells
• Contractile force

Vasculature
• Nitric oxide release
• Proliferation
  and migration

Liver cells
• Lipid metabolism

General/others
• Cell death
• Oxidative stress

Epigenome
• Chromatin accessibility
• DNA methylation
• Chromatin structure

Proteome
• Protein expression
• Modification, structure,
  localization, turnover

Transcriptome
• Bulk RNA expression
• Single-cell RNA expression

Metabolome
• Metabolite abundance
• Metabolite flux

Figure 1
Omics approaches in induced pluripotent stem cell (iPSC) models of human diseases.� Populations of healthy individuals and/or
those with diseases donate skin or blood cells.� iPSCs are derived from donors to capture their genetic backgrounds.� The
individual-specific iPSCs are coaxed into differentiated cells resembling primary tissues, including cardiomyocytes, neurons, and
hepatocytes.� The resulting iPSC-derived cells are used to profile (a) live cell functional phenotypes and (b) molecular expression.
� Large-scale profiling data are analyzed to discern the molecular mechanisms responsible for cellular phenotypes and disease traits.

2. USING OMICS METHODS TO QUANTIFY MOLECULAR
AND CELLULAR PHENOTYPES

2.1. The Epigenome and Chromatin Structure

Unlike the genome, which is largely uniform across cells in the body, molecular phenotypes—
such as chromatin landscapes, gene expression, and protein profiles—are highly dynamic and cell
specific.

Epigenomic factors—including DNA methylation, transcription factor binding, enhancer–
promoter contact, chromatin accessibility, and chromatin structure—have been shown to
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Genome-wide
association study
(GWAS): large-scale
association studies
undertaken in a
population to discover
correlations between
genetic variants with
observable phenotypes

Chromatin
conformation
capture (3C): method
to capture long-range
interactions between
two specific genomic
loci by using
cross-linking ligation
reactions

ATAC-seq:
epigenomic method
that probes open
chromatins to
determine their
accessibility for Tn5
transposase to insert
adapters for
sequencing

Gene regulatory
network: an
interconnected set of
signaling genes,
transcription factors,
and their target genes
that functions as a unit
to modulate gene
expression

Expression
quantitative trait
locus (eQTL):
a quantitative trait
locus that modulates
the expression level of
a gene as its
quantitative trait

critically regulate gene expression and may in fact be mechanistically responsible for the function
of some genome-wide association study (GWAS) variants in intergenic regions. In addition, it is
now known that the interphase genome folds like origami into a defined three-dimensional (3D)
shape that determines cell type specification and gene expression. Two notable technologies have
emerged to assay chromatin structure, including chromatin conformation capture (3C) and its
derivatives, for assaying long-range interactions and chromatin topology (51), and the assay for
transposase-accessible chromatin with sequencing (ATAC-seq), for identifying open and accessi-
ble chromatin regions (52). 3C and its derivatives employ formaldehyde cross-linking to physically
join together DNA in proximity and then use the proximity library for high-throughput DNA
sequencing to discern the 3D structure of chromatin and long-range interactions (51). These stud-
ies have generally found that human chromosomes are partitioned into Mb-sized topologically
associated domains, wherein genes tend to be coregulated, and which can be classified as active
or inactive. A number of extensions of these methods—including chromatin interaction analysis
by paired-end tag sequencing (known as ChIA-PET) and 3C-coupled chromatin immunopre-
cipitation (known as Hi-ChIP)—further simplify the method and produce more targeted data
by immunoprecipitation of cross-linked DNA using the particular proteins of interest to iden-
tify long-range contact associated with each protein factor (53). ATAC-seq uses a hyperactive
prokaryotic Tn5 transposable element to sequence accessible chromatin regions that are open to
the transposase (52). ATAC-seq has gained in popularity because it provides a sensitive method
for sequencing open chromatin regions in native chromatin while requiring significantly fewer
cells than previous methods (52).

In iPSC models, ATAC-seq has been applied to discover epigenomic changes occurring dur-
ing differentiation processes. There appears to be a general correlation between the genome-wide
transcriptome and chromatin accessibility, for instance, during directed cardiomyocyte differen-
tiation (54), in which transcription factor binding motifs, including those for the TBX, JUN,
and STAT3 families, progressively become more open at the chromatin level to activate cardiac-
specific gene regulatory networks. Moreover, the binding status of epigenetic factors, including
the histone methyltransferases, has been shown to be important for regulating directed differen-
tiation (55). In iPSC-derived neurons, ATAC-seq shows that open chromatin regions can be used
to generate testable hypotheses on the function of GWAS-implicated psychiatric risk variants in
noncoding regions (56).

2.2. The Transcriptome and Single-Cell Gene Expression

Enabled by next-generation DNA sequencers, RNA-seq has supplanted earlier microarrays to
allow for the routine quantitation of transcripts in biological samples (32, 33). The latest high-
throughput sequencers from Illumina (San Diego, CA) and other manufacturers can generate
billions of sequences from a single experiment thanks to the massively parallel nature of the se-
quencing reactions. Deducing the sequence of mRNAs with these sequencers allows for rapid
quantitative assessment of the expression of tens of thousands of transcripts within a cell or tissue
sample. Measurements of bulk RNA expression on a large scale are now commonly deployed to
query gene expression in iPSC-derived cells. Clustering and unsupervised classification analyses
are commonly used on RNA-seq data to compare diseased cells with normal cells to determine
specific groups of genes or pathways that may be changed and thus implicate their potential
importance in disease origin or in explaining observed cellular pathologies. RNA-seq also con-
textualizes the functions of gene variants in association studies and can be used for fine-mapping
and identification of causal variants, as well as of the potential mechanisms by which they affect
traits. Many GWAS variants function as expression quantitative trait loci (eQTLs) by affecting
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Single-cell RNA
sequencing
(scRNA-seq):
next-generation
sequencing technique
that profiles the
sequence and
abundance of
transcripts in
individual single cells
to measure expression
heterogeneity

transcript levels, whereas other exonic variants affect splicing ratios that can likewise be discerned
using RNA-seq (57).

Single-cell RNA sequencing (scRNA-seq) is a recent development that allows transcript ex-
pression from single cells to be characterized to resolve transcriptional heterogeneity within cell
populations. Its emergence was driven by technical advances made in constructing and amplifying
sequencing libraries from miniscule amounts of RNA, as well as the development of microfluidic
contraptions that allow for the separation of individual cells. Three major scRNA-seq approaches
are in popular use. The first involves plate-based protocols that place individual cells into wells.
The second involves automated microfluidic platforms that capture individual cells on microfluidic
chips. The third involves a droplet-based massively parallel technique (Table 1) (58).

Plate-based techniques, such as Smart-seq, offer a fast and efficient method for analyzing 50
to 500 single cells in one experiment, with a flexible experimental setup (59). Current plate-
based techniques boast increased accuracy and short processing times, and they are compati-
ble with automation by liquid-handling robotics. They also allow cells of any morphology and
size to be analyzed and can read up to 10,000 genes per single cell. C1 (Fluidigm, South San
Francisco, CA), a commercially available, automated microfluidic platform, allows 96 individual
cells to be captured at a time on a microfluidic chip. It offers the option to evaluate the captured
cells under a microscope before reverse transcription, and it is effective for comparing homoge-
neous cell populations. However, the cost of reagents remains high and >10,000 cells are required
as input, rendering the analysis of rare or small cell populations possible only when multiple sam-
ples are pooled. Ineffective automated sorting of cells into singlets also has been reported, during
which multiplets are falsely analyzed as single cells. To overcome such limitations, cell expression
by linear amplification and sequencing (CEL-seq) has been developed by combining the two tech-
nologies (60). CEL-seq applies a molecular barcode to cells at an early stage, thus lowering the
cost of reagent and increasing the number of cells per sample to 500–2,000 cells. Subsequently,
massively parallel scRNA-seq (known as MARS-seq) has also been developed by combining single-
cell barcoding with a 384-well plate and fluorescence-activated cell sorting (known as FACS) to
increase the scale and lower the costs (61). These pooled techniques allow for the isolation of
various cell types and enhanced throughput. Finally, droplet-based scRNA-seq can tackle tens of
thousands of single cells per sample, using barcoded complementary DNAs to label single cells
encapsulated in individual droplets (62).

Insights into single-cell transcriptomes have revealed hidden heterogeneity in cell types and
cell states (63, 64), decoded dynamic processes and developmental time lines (65, 66), and uncov-
ered disease markers that are masked when cells are averaged in bulk sequencing (63, 67). In iPSC
models, scRNA-seq has been used to understand the spatial and temporal heterogeneity of repro-
gramming (68) and differentiation (69, 70) and to identify novel surface markers for enrichment
in induced cardiomyocytes (69). Machine-learning algorithms have also been used to predict the
functional states of iPSC-derived neurons based on single-cell transcriptomes by using a combi-
nation of scRNA-seq and patch clamping to predict neuronal physiology and identify biomarkers
of electrophysiologically active neurons (71).

2.3. The Proteome and Proteoforms

Although the central dogma of molecular biology dictates that information encoded in proteins
derives from nucleic acids, the expression of proteins and, by extension, the metabolites they cat-
alyze is poorly correlated with the expression of transcripts in many systems. In some instances,
changes in the transcript explain only 10–40% of protein expression changes (72, 73). This non-
correlation is partly attributable to the fact that protein abundance is controlled by both the rates of

www.annualreviews.org • Systems-Wide Approaches in iPSC Models 399
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Table 1 Comparison of common single-cell analysis techniques

Technology

Description
Microfluidic (e.g.,

Fluidigm C1)

Droplet (e.g.,
Drop-seq,
inDrop)a

Plate (e.g.,
Smart-seq,

Smart-seq2)

Pooled approaches
(e.g., CEL-seq2,

MARS-seq)

Mass cytometry
(e.g., cytometry

by time-of-flight)

Molecule
target

RNA RNA RNA RNA Protein

Single-cell
separation
and library
construction
principle

Aligns and
separates cells in
microfluidic
channels based on
size

Uses emulsion
chemistry to
construct
separate
libraries within
each droplet

Deposits cells into
individual wells of
physical 96- or
384-well plates

Single-cell barcoding
is combined with
fluorescence-
activated cell sorting
or microfluidic-based
cell sorting

Tags single cells
with antibodies
conjugated with
heavy metal
isotopes; separates
by flow cytometry

Detection
principle

RNA sequencing RNA sequencing RNA sequencing RNA sequencing Elemental mass
spectrometry

Advantages Works well with
homogeneous
populations

Commercially
available

Unbiased cell
capture

Massive
parallelization
of 800–10,000
cells per
experiment

Does not require
cell sorting

Unbiased cell
capture

Fast and efficient
way to capture
50–500 single cells

Single cells can be
stored in plates long
term

Generalizable; can
analyze cells of any
shape or size

Increased target cell
number (500–2,000
cells) per experiment

Decreased labor and
reagent costs with
higher sensitivity

Acquires
protein-level
information or
cell-surface
expression
information

Disadvantages High cost and high
number of input
cells

Can analyze only
up to 96–300 cells
per experiment

Large-scale
experiments are
not feasible

Inadvertent
multiplet capture

Reduced
sensitivity and
transcript
recovery

Restricted to
analysis of cells
smaller than
droplet
diameter

Experimental
protocol can
introduce technical
noise

Low sensitivity and
high cost

Requires fluorescence-
activated cell sorting
prior to plating

Cell number
analyzable per sample
is limited to 2,000

Relatively low number
of genes detected

Requires
compatible
antibodies for
targets

Analyzes only
50–100 markers
per cell

ainDrop System (1CellBio, Cambridge, MA).

production and of degradation. Whereas the rate of production scales with transcript abundance,
the rate of degradation is influenced by posttranslational factors, including ubiquitin ligase activity,
that cannot be easily modeled from transcripts alone (74–76). Therefore, a comprehensive model
of molecular signatures requires the integration of protein- and transcript-level inquiries (76,
77). Moreover, the functional state of the proteome in a cell—such as the localization, structure,
modification, and turnover dynamics of protein molecules—is fully described only in higher-
dimensionality space (78); hence, there is interest in assaying these molecular parameters as well.
However, proteomic analysis is a challenging endeavor. The ∼20,000 genes in the human genome
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Tandem mass
spectrometry:
analysis of proteins or
metabolites that
measures the accurate
mass of a molecule
(MS1), followed by
isolation,
fragmentation, and
measuring the masses
of its fragments

can produce up to 6 million different protein species due to the addition of conformational, splicing,
or chemically modified isomers, which are sometimes referred to as proteoforms (79). The dy-
namic range of concentration across protein species is also far greater than in transcripts, in which
the most abundant protein can be 10 trillion times more abundant than the rarest species (80).

Two prevalent approaches for quantifying proteomes are affinity-based proteomics and tan-
dem mass spectrometry (Table 2). For affinity-based proteomics using antibodies, mass cytometry
approaches (or cytometry by time-of-flight, known as CyTOF) multiplex protein detection by at-
taching up to 134 metal isotopes to target-specific antibodies (81), and these are then resolved
by elemental mass spectrometry (82). As with antibodies, aptamer probes operate by their spe-
cific molecular affinity to target antigens. Unlike immunoglobulins, aptamer probes are made of

Table 2 Comparisons of proteomics technologies

Technology

Description Mass spectrometry–based proteomics Affinity-based proteomics

Approach Bottom-up
DDA

Bottom-up
DIA

Bottom-up targeted
(PRM/MRM/SRM)

Top down Antibody
array

Aptamer
array

Peptide or
protein
identification
principle

Measures m/z
of precursor
and selects for
fragmentation

Fragments m/z
windows and
assigns
fragments to
multiple
peptides

Instrument
programmed to
monitor only
specific precursor–
fragment
transition pairs

Measures m/z of
intact proteins
to discover
proteoforms

Recognizes
antigen
epitopes
using im-
munoglobu-
lins

Recognizes
antigen
epitopes
using
nucleic acid

Advantages Higher protein
coverage than
other mass
spectrometry
methods

Can be adapted
to protein
modifications
and different
species or
proteoforms

High specificity

Higher repro-
ducibility than
DDA and
higher
throughput
than targeted
methods

Can be adapted
to protein
modifications
and different
species or
proteoforms

High specificity

Higher sensitivity
than other mass
spectrometry
methods

Can be adapted to
protein
modifications and
different species or
proteoforms

High specificity

Unique capability
to identify
isoforms and
combinatorial
modifications

Can be adapted
to protein
modifications
and different
species or
proteoforms

High specificity

Lower cost
than other
affinity-
based
methods

Ease and
commercial
availability

High
sensitivity

Higher
coverage
than other
affinity-
based
methods

Ease and
commercial
availability

High
sensitivity

Disadvantages Requires hefty
initial
investment
and access to
technical
expertise

Sensitivity not
as good as
affinity-based
approaches

Requires hefty
initial
investment
and access to
technical
expertise

Sensitivity not
as good as
affinity-based
approaches

Requires hefty
initial investment
and access to
technical expertise

Sensitivity not as
good as
affinity-based
approaches

Requires hefty
initial
investment and
access to
technical
expertise

Sensitivity not as
good as
affinity-based
approaches

Specificity is
uncertain

Requires
dedicated
reagents for
each target

Specificity is
uncertain

Requires
dedicated
reagents for
each target

Abbreviations: DDA, data-dependent (shotgun) acquisition; DIA, data-independent acquisition; m/z, mass/charge; MRM, multiple reaction monitoring;
PRM, parallel reaction monitoring; SRM, selected reaction monitoring.
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Aptamer:
oligonucleotide
sequences that show
binding affinity to
specific shapes

specifically designed nucleic acid sequences, which fold into specific shapes to bind to targets, and
they can be further modified to include hydrophobic motifs to enhance protein binding (83). An
advantage of aptamers is that the probes can be easily synthesized de novo, and the selection of high-
affinity probes can be automated by successive rounds of in vitro enrichment. In the past 5 years,
applications have employed aptamers to analyze hundreds of samples to identify protein markers of
myocardial infarcts (84) and, retrospectively, the cause of torcetrapib toxicity in a clinical trial (85).
These assays are attractive for large clinical or population-based studies because they are commer-
cially accessible and scalable, allowing more than a thousand proteins to be quantified in hundreds
of samples with little prior expertise or investment needed. They have also been successfully
demonstrated to yield multiprotein marker panels that can predict cardiovascular risks (86, 87).

In tandem mass spectrometry, the masses of tryptic peptides within a biological sample are
measured accurately, and the peptides are fragmented in a predictable manner. The resulting
tandem mass spectrum is computationally matched to a theoretical spectrum generated from
genomic sequences to identify the peptide sequence. The performance of proteomics experiments
has steadily increased with the availability of the advanced Orbitrap (Thermo Fisher Scientific,
Waltham, MA) (88) and time-of-flight (89) mass spectrometers that feature high mass resolution
and scan speed. Parallel to instrumentation advances, there has also been recent progress made in
data acquisition methodologies. Conventional data-dependent (shotgun) acquisition has continued
to be optimized in terms of sample processing chemistry and sampling regimens, and it can
now reliably quantify virtually complete proteomes (more than 10,000 proteins), both in human
cultured cells (37) and in more challenging tissues, such as from subanatomical regions of primary
human heart (38). Data-independent acquisition (DIA) methods, such as sequential windowed
acquisition of all theoretical fragment ion mass spectra (known as SWATH-MS), instruct the
mass spectrometer to systematically queue all detectable ions in the parent mass spectrometry
scan for fragmentation rather than fragmentation being triggered by the top-abundance ions.
With modern fast-scanning instruments, DIA can overcome stochasticity in peptide detection
and allow the same proteins to be targeted reliably in consecutive experiments (74, 90, 91). Recent
DIA applications have demonstrated consistent quantification of more than 4,000 proteins across
experiments in a manner that is reproducible across laboratories and operators with low coefficients
of variation (92). Tandem mass spectrometry has the advantage of being a universal analyzer
that can be readily applied to identify neoantigens, posttranslational modifications (79), protein
interactions (93), novel isoforms (94), and proteins from any species.

In iPSC models, the power of mass cytometry to detect multiple surface protein markers in
single cells has led to the discovery of markers of early stages of iPSC reprogramming that are
absent both in the starting fibroblasts and reprogrammed iPSCs (95, 96). Mass spectrometry–based
proteomics has also been widely utilized, including to identify cell surface glycoproteome markers
for differentiating iPSC-derived hepatocytes that may be used for cell purification (97). A study in
2017 used tandem mass spectrometry to measure protein expression in 16 iPSC lines, and it showed
that donor-specific differences in expression profiles remain discernible at the proteomic level (98).

2.4. The Metabolome and the Exposome

Metabolomics concerns the study of small molecules—including amino acids, α-keto acids,
fatty acids, acylcarnitines, medium- and long-chain acyl-coenzyme A, and other lipids and
organic acids—that are absorbed and released by different cell types in the body. The Human
Metabolome Database lists more than 100,000 known metabolites, which include endogenous
circulating metabolites in body fluids as well as xenobiotics, such as metabolites from foodstuffs
and environmental pollutants (99). Environmental exposures, including exposures to small
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molecules and other factors that can modulate disease risk and development, have been termed
the exposome of an individual. The gut microbiome also interacts with the human metabolome
by metabolizing small molecules in the body, some of which have been found to directly
influence disease risks (100). Tandem mass spectrometry is one of the principal techniques,
alongside nuclear magnetic resonance (NMR) spectroscopy, used for the large-scale discovery of
metabolites and lipids. These two techniques are complementary. Although NMR can measure
metabolites in a nondestructive manner in live biological specimens, mass spectrometry has
higher sensitivity and throughput. When combined with stable isotope analogs of metabolites,
mass spectrometry can also calculate the rate of flux of metabolites through metabolic pathways.

In iPSC models, mass spectrometry metabolomics profiling can be used to identify mechanisms
in disease models, for example, to implicate oxidative stress and mitochondrial dysfunction in
Pompe disease (101). For cell therapy research, metabolomic profiles of the cell culture medium
of iPSC-derived cardiomyocytes under oxygen depletion revealed hypoxic responses involving
ketogenesis, ketolysis, and methylglyoxal-related metabolism (102). Metabolomic profiling was
also performed on a large panel of iPSC-derived hepatocytes to investigate the mechanism through
which a GWAS variant operated in metabolic diseases, discovering a clear association between
the risk allele at the implicated locus and variations in lipid synthesis in iPSC-derived hepatocytes.
More importantly, this association was cell-type specific and was not found in iPSCs or adipocytes,
corroborating the importance of measuring functional phenotypes in cells relevant to the tissue
of interest (7).

2.5. The Phenome and Live Cell Functions

The complement of patient phenotypes is sometimes called the phenome to mirror the con-
cept of the genome. The phenotypes of iPSC-derived cells can likewise be measured as the
in vitro phenome and exposome, both of which often cannot be directly observed from patients’
records or archived primary tissues. These phenotypes are useful for mapping associations with
molecular profiles to identify the molecular pathways and genetic variants that control variations
in functional traits.

For iPSC-derived excitable cells, such as cardiomyocytes and neurons, their action potential
duration, velocity, and amplitude; depolarization curve; resting membrane potential; and indi-
vidual ion currents can be measured using multielectrode arrays (103), voltage-sensitive optical
reporters (104), or patch clamps (105, 106). L-type Ca2+ currents and intracellular Ca2+ stores
(107) can be measured with calcium-sensitive fluorescence imaging (107, 108). These electrophys-
iological parameters are sensitive to individual donor differences, arrhythmias (26, 27), cytotoxicity
(19), cardiomyopathies (109, 110), and neuronal pathologies (108). For contractile cells, such as
iPSC-derived cardiomyocytes, the amplitude and kinetics of contraction can be measured by video
imaging microscopy (111, 112) or electrical impedance (113). Their contractile force can be mea-
sured by atomic force microscopy (114), physical microposts (115), or substrate displacement
(116), which decreases as expected by cardiomyopathy models (114, 117), mimicking clinical ob-
servations. Structurally, sarcomere lengths and widths can be measured by microscopy, and these
have been shown to alter as expected by models of dilated cardiomyopathy (110).

Functions of the endothelium and the vasculature can be modeled by iPSC-derived endothelial
cells and smooth muscle cells in tests for morphology, nitric oxide production, migration, and pro-
liferation; these functional values can change according to endothelial dysfunction in diseases such
as pulmonary arterial hypertension (28) and diabetes (118). Finally, other measurable parameters
include cellular functions related to metabolism (119), energetics (22), oxidative stress (120), cell
death, and proliferation.
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Quantitative trait
locus (QTL):
a variant or region in
the genome that is
correlated with the
variance of a
measurable
quantitative trait
across individuals, such
as body mass index

Coexpression
networks:
interconnected sets of
genes that are implied
to be functionally
related because they
covary in their
expression patterns
across cells,
individuals, or species

3. USING LARGE iPSC PANELS FOR NETWORK BIOLOGY

3.1. Systems Biology Approaches Using Omics Data

Many common disorders, including coronary artery diseases and neurodegenerative diseases, arise
from the interactions of complex genetic and environmental factors. Omics experiments suggest
that even simple stimuli can trigger the differential expression of a plethora of genes (121), which
poses questions about the overall contribution of individual targets or pathways. GWAS results
further show that variants contributing to complex traits are scattered relatively evenly and ubiq-
uitously across chromosomes in the genome, and hence, many traits may in fact be conceptualized
as being omnigenic (122). This complexity has prompted interest in systems biology and network
biology approaches, which take cues from the study of complex systems and attempt to model
biological phenomena as the products of interacting molecular networks. Contrary to conven-
tional single-target approaches, systems-wide approaches assume that genes function within the
context of networks, in which members within a network module collectively function as a critical
unit to define cell state and function (123). An example of a gene network is the cellular pluripo-
tency network involving NANOG, OCT4, SOX2, and other genes. The functional state of the
network cannot be reduced to any one gene (124), and the comparative analysis of a single gene
is insufficient to define the network (125).

The topology of molecular networks can be inferred from large-scale surveys of their compo-
nents prior to and after perturbations, and then by fitting the resulting data to suitable models (44,
121, 123). In practice, two approaches have been demonstrated in iPSC models to define relation-
ships across genes (Figure 2), namely (a) using the association of genetic variants and molecular
profiles (QTL studies) to unravel gene regulatory networks and (b) identifying correlated expres-
sion profiles among modules of genes (coexpression networks). Other types of biological networks,
including physical protein–protein interaction networks (126, 127) and cell–cell interactions (128),
also exist and await investigation in iPSC models.

3.2. Capturing Individual Variabilities in iPSC Panels

eQTL analysis finds associations between genetic variants in a population and the expression
levels of transcripts (129). From these associations, eQTL studies infer the genes and variants
that regulate gene expression in particular cell types. It is thought that many GWAS variants
modulate the expression levels of particular genes, hence eQTLs often provide a mechanistic
layer to explain how GWAS variants influence complex traits and to discern gene regulatory
networks (44). Because of the accessibility of blood samples, many initial human eQTL studies
were performed using transcript expression profiles from blood cells (129). Although informative,
these studies did not capture all of the regulatory variants that are associated with traits of interests.
Whereas many eQTLs are conserved across tissues (130), others regulate gene expression in tissue-
specific manners, due in part to the unique physiological cues or chromatin landscapes in each
cell type. This has motivated studies that leverage RNA-seq data sets from archived tissues. For
instance, the Genotype–Tissue Expression (GTEx) Consortium data set, comprising 44 tissue
types from 449 human donors (33, 131), allowed the genetic architectures of separate tissues to
be examined. A drawback of archived tissues, however, is that interesting variants cannot be easily
followed because live cell materials are not available from donors who have died.

Human iPSCs provide an alternative route to discern tissue-specific genetic architecture, and
they also allow results to be validated in individual-specific live cells. Initial comparisons of in-
terindividual versus intraindividual variations of RNA-seq data confirmed that iPSC lines from
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Figure 2
Identification of disease networks using quantitative trait locus (QTL) and coexpression analyses.� Gene variants and expression
profiles are acquired in large induced pluripotent stem cell (iPSC) panels.� (a) QTL studies use genetic variants as causality anchors
to map relationships between genes and traits (gene regulatory networks); (b) coexpression network modeling takes advantage of
covariation in the expression profiles of functionally related genes across individuals to generate hypotheses about the underlying
regulations of the genetic program(s).

individual donors can be reliably distinguished from one another using RNA-seq profiles (132–
134), and individual differences in RNA-seq are sufficient to predict patient-specific phenotypes,
such as responses to drug treatment (132). A study compared 12 iPSC lines from female breast
cancer patients undergoing doxorubicin treatment and found that iPSC-derived cardiomyocytes
recapitulated individual differences in drug cardiotoxicity that may be explained by individual
RNA-seq profiles (19). It is generally observed that genetic differences between individuals are
preserved in iPSCs regardless of the origin of the cells used for reprogramming (133, 134),
suggesting that the architectures of gene regulatory networks may be reproduced with sufficient
finesse to model individual variance in gene expression within even larger populations.
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Induced pluripotent
stem cell (iPSC)
panels: collections of
multiple iPSC lines
from different donors
used as a surrogate
population

An early hurdle in using large iPSC panels for association mapping was the lack of consistent
and scalable methods to produce a sufficient number of cell lines from large cohorts. Moreover,
reprogramming and culturing conditions can create additional nongenetic sources of variance
(135, 136). Although the use of iPSC models eschews some variances in primary tissue analysis,
such as individual life history and environmental exposure, the overall variability of gene expression
in iPSCs is thought to be greater than that in primary tissues (137). Because technical variances
can mask biological signals, association studies using iPSCs require large populations to achieve
sufficient power for discovery. It has been estimated that 40–80 or more lines are needed to
detect regulatory variants with a large effect size in a given gene (137), and hundreds of lines are
expected to be needed to discover QTLs with moderate effects. In the past 2 years, large human
iPSC panels have emerged that compare iPSC lines from hundreds of donors with healthy versus
diseased backgrounds. This development was enabled by advances in reprogramming and culturing
protocols (138–140), quality control (141–143), and high-throughput production methods (141,
144), which increased the throughput of generating high-quality iPSCs.

Several consortia have been established to create iPSC panels from diverse donors, particularly
for cardiovascular, metabolic, and neurobiology research (145). The National Heart, Lung, and
Blood Institute’s Next Generation Genetic Association Studies (NextGen) Consortium (146) was
launched in 2011 to create iPSC libraries from thousands of multiethnic donors to study left
ventricular hypertrophy, long QT syndrome, insulin resistance, and sickle cell anemia (146–148).
The European Union’s Innovative Medicines Initiative’s StemBANCC (Stem cells for Biological
Assays of Novel drugs and prediCtive toxiCology) program aims to generate 1,500 lines from 500
individuals, including healthy and diabetic donors (145). The HipSci (Human Induced Pluripotent
Stem Cell Initiative) consortium, funded by the UK’s Medical Research Council and the Wellcome
Trust, aims to establish ∼1,000 cell lines from healthy individuals and those with diseases (98) and
to differentiate them into functional neurons. Complementing these efforts, more iPSC libraries
have been established in biobanks at the Stanford Cardiovascular Institute, Cedars-Sinai Medical
Center, the Allen Institute, and other institutes around the globe to capture cells from cohorts of
patients and ensure iPSC panels are representative of diverse populations (149).

Several landmark studies have been published using iPSC panels from hundreds of individual
donors. One early finding is the conclusive demonstration that iPSC lines preserve the genetic
variability and architecture of individual donors (98, 137, 148, 150). Because the cohort designs
of these studies involve hundreds of donors, as well as multiple iPSC clones per donor, compar-
isons can be made between variations in gene expression that exist across individuals (biological
differences) and variations across lines from identical donors (technical variation). Comparisons of
gene expression suggest that intraindividual clones cluster much more closely than interindividual
lines and that interindividual variations account for 10–50% of differences in transcript expression
(98, 137, 148), confirming the findings of early, smaller-scale studies (132). However, significant
intraindividual heterogeneity was also evident, which explains almost 50% of gene expression
variability. These residual variances are attributable, to various extents, to differences in repro-
gramming methods (138), culturing conditions (98, 148), batch effect (98, 148), the donor’s sex
(98), cell passage number (98), cell type of origin of iPSC cells (133, 151), and other unexplained
sources. Curiously, the respective contributions of biological and technical variances appear to
be gene specific, with donor differences being the largest contributor of variance in ∼50% of
genes (98). Genes with the highest intraindividual variance were strongly enriched for develop-
mental function, whereas housekeeping genes had low variance (148), suggesting that reprogram-
ming variability preferentially affects certain genes and that a network model may be useful for
unearthing gene modules associated with reprogramming errors. A recent HipSci study further
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confirmed that iPSCs preserve individual differences at the epigenomic and proteomic levels
(98).

3.3. Identifying Regulatory Networks from Genetic Variants in iPSC Models

Another major finding is the demonstration that iPSC panels capture sufficient variability across
individuals to power association mapping and identify eQTLs. One study of iPSC panels identified
more than 4,000 eQTLs and rediscovered loci from GTEx tissue studies (148). Another study
somewhat unexpectedly found that the power to discover eQTL-regulated genes in iPSCs was,
in fact, comparable to that in somatic tissues of an identical sample size (98). Remarkably, up to
one-third of iPSC eQTLs appear to be specific to iPSCs and are not found in other somatic tissues
(98). These iPSC-specific eQTLs preferentially affect regulatory networks in stem cells and early
development, including binding motifs for NANOG and other pluripotency factors (98, 152).
They also appear to be significantly enriched in variants implicated in macroscopic GWAS traits,
thus helping to connect some GWAS loci to the eQTLs of genes of interest, including telomerase
reverse transcriptase in cancer (98). Moreover, up to three-quarters of these tissue-specific eQTL-
regulated genes are controlled by a different set of variants in other tissues (i.e., their tissue
specificity was not due to gene non-expression in other tissues) (98), strongly indicating that gene
expression can be controlled by different regulatory networks in different tissues. In corroboration,
many iPSC eQTLs have been found not only adjacent to the transcription start sites of the genes
they regulate but also next to enhancers and promoters (148). Because enhancers and promoters
are highly cell specific, this corroborates the utility of using human-specific differentiated cells to
identify regulatory elements that are critical to traits of interest in relevant tissues.

Indeed, with the pluripotency of iPSCs, systems-level inquiries are readily extended to dif-
ferentiated cell types to uncover genes that contribute to individual variability in tissue-specific
phenotypes. The iPSCORE study provided a proof of concept that connected molecular and cel-
lular traits in differentiated cardiovascular cells. The study used a panel of publicly available iPSCs
from 222 ethnically diverse individuals, including 39 individuals with heart disease (arrhythmia or
cardiomyopathies) (153). Genotyping indicated that the panel contained risk and benefit alleles
for up to 95% of the single-nucleotide polymorphisms (SNPs) implicated by GWASs, includ-
ing multiple SNPs associated with coronary artery disease. Following directed differentiation of
seven lines into iPSC-derived cardiomyocytes, gene expression analysis showed that their profiles
were clustered by genetic background, and variants were identified that associated with cellular
phenotypes, including beat rates and electrophysiological measurements (153).

For metabolic traits, one NextGen study differentiated 86 iPSC lines into hepatocytes (150).
RNA-seq in both cell types allowed for assessment of the tissue specificity of regulatory networks,
and the study identified eQTL genes that were specific to iPSCs or iPSC-derived hepatocytes or
that were common to both. Hepatocyte-specific eQTL genes are enriched for the regulation of
cholesterol levels. The study further uncovered novel associations between hepatocyte-regulated
genes and lipid metabolism that were not found in primary tissue analysis in the GTEx project,
including associations with CPNE1 and ANGPTL3 (150). In parallel, one HipSci study differen-
tiated iPSC lines from 100 donors to sensory neurons (137) and performed RNA-seq to identify
eQTLs on ∼3,800 genes in these neurons, approximately one-quarter of which were novel and
not found in the GTEx project. In addition, RNA-seq and ATAC-seq data from the same study
enabled the discovery of neuron-specific splicing QTLs and quantitative chromatin accessibility
QTLs. The identified expression, splicing, and chromatin accessibility variants overlapped with
GWAS hits for neuronal traits, thereby demonstrating that large-scale RNA-seq and ATAC-seq
of iPSC panels can provide valuable mechanistic contexts for GWAS findings (137).
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3.4. Identifying Coexpression Networks in iPSC Models

In addition to QTL mapping, coexpression analysis represents another approach for querying
the structure of gene networks (43, 123). Coexpression network analysis is predicated on the
assumption that, under selection, an efficient genetic program will evolve with an organization
such that genes that work together physically or functionally should come to be coregulated by the
cell. The analysis asks across individuals, which genes tend to have their expression levels cluster
together under homeostatic versus stimulated conditions, the result of which is used to infer
functionally coregulated genes (160). Further inference may be drawn by introducing constraints
to the coregulated genes, either by seeding a network based on prior knowledge of the gold
standard regulatory relationships or by making additional assumptions about the behavior and
structure of the network (Figure 3) (160, 161). The constructed correlation network can be
combined with probabilistic causal modeling to predict the directionality of network edges and
identify driver genes. Bayesian networks are frequently employed to predict which one of a cohort

TOPOLOGY

NUMBER OF
GENE TARGETS

MOLECULAR
MECHANISM

Conventional paradigm

Single/few

Individual genes/
linear pathways

Differential profile

Interconnected

Polygenic/omnigenic

Systems paradigm

Differential network

Figure 3
Properties of gene networks: genes conceptualized as linear pathways versus complex networks. In the linear
pathway worldview, disease genes are identified via the conspicuous differential expression of one or a few
molecular markers along known pathways (differential profile). In the complex network view, differences in
subnetwork memberships can be analyzed to detect changes in networks or subnetworks between two states
and to identify disease modules. Network theories have discovered a number of properties commonly found
in biological networks, including gene networks (123). Gene networks are assumed to follow a scale-free
topology, in which the distribution of degrees (i.e., the number of neighbors) of nodes in the network follows
a power distribution. Scale-free topology has been found in various social and biological networks, is thought
to emerge automatically from individual interactions (154), and underlies the resilience and evolvability of
complex adaptive systems (155, 156). It also predicts the emergence of hub genes (157) and the small world
phenomenon, in which most genes can be connected to one another by a small number of steps (123). One
prediction of the model is that differential network topologies can also occur due to the formation or
dissolution of covariation between genes, which leads to changes in node connectivity (158). In disease,
changes in gene regulation can rewire networks so that genes normally associated with one subnetwork
become associated with another (159).
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of coexpressed genes—based on their variance across all samples—is statistically more likely to
influence the expression of the other genes.

In iPSC models, consensus coexpression networks from multiple transcriptomic data sets have
been leveraged to determine cell identity and guide iPSC engineering and differentiation (162).
RNA-seq data from iPSC panels have also been leveraged for coexpression network analysis. In
one study comparing 300 iPSC lines, the expression variance that was not explained by eQTLs
was found to derive mostly from targets of the Polycomb repressive complex, suggesting that epi-
genetic regulation from chromatin remodeling is a major factor in reprogramming reproducibility
(148). Coexpression analysis was subsequently performed to infer a probabilistic causal network,
identifying a number of key drivers that causally affect the expression levels of developmental
pathways in iPSCs, namely GATA4, GATA6, EOMES, FOXQ1, CER1, APOA2, and LINC00261,
notably with the first five also being known Polycomb targets (148). In the same study, causal
network inference also nominated HOXA5 and HOXC10 as likely key driver genes that can
influence the endothelial differentiation potential of cells (148). Interestingly, the contribution of
the Polycomb repressive complex to differentiation variability was corroborated in an independent
comparison of gene expression profiles of iPSCs that were generated using different reprogram-
ming methods (lentivirus, Sendai virus, episomal, mRNA, minicircles, or mRNA and microRNA)
(138).

Finally, scRNA-seq is opening new avenues to coexpression network analysis. Individual cells
can regulate transcription based on stochastic heterogeneity in cell state, volume, and cycle (147),
and thus variations of transcripts across cells can inform coexpression even under identical genetic
backgrounds. Coexpression networks can be constructed with higher throughput by consider-
ing the correlated expression of genes across many cells on the same culture dish rather than
across many cell lines (163, 164). scRNA-seq can be further combined with recent advances in
genome editing for massively parallel reverse genetic screens, such as in the Perturb-seq (165)
or CRISPR-seq (166) approaches for modeling genetic networks. In brief, a CRISPR pooled
screen is set up such that each individual cell is targeted with a random guide RNA and bar-
code to knock down or knock out a random gene. The resulting transcriptomic change within
the cell is then measured by scRNA-seq and connected to each barcode, resulting in a massive
genetic screen that simultaneously measures the consequences of the individual disruption of tens
of thousands of genes. The resulting data can be modeled as a regulatory network in which the
expression level of each gene is a linear combination of regulatory inputs at one or more disrupted
genes.

4. CONCLUDING REMARKS

The confluence of iPSCs and omics technologies allows for the tissue-specific and patient-specific
expression profiles of genes, transcripts, proteins, and metabolites to be queried on a large scale.
Large-scale omics data can be further leveraged across samples to provide useful information
on gene regulatory networks in relevant cell types. We anticipate that the combination of
systems-wide approaches and iPSCs will benefit two primary areas of disease inquiry in the near
term. First, large iPSC panels will serve as surrogates for human populations and allow systems
genetics studies to identify gene–trait correlations in complex diseases (49). The construction of
iPSC panels from donors of multiple ethnicities will allow association studies to more routinely
cover underrepresented populations. Second, understanding the architecture of gene regulatory
networks in various cell types will likely improve understanding of cell-type specification in devel-
opment and disease, iPSC engineering, and deconvolution of mixture samples (162, 167). With
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CURRENT LIMITATIONS AND ONGOING REFINEMENT OF iPSC MODELS

A major limitation of iPSC models is that derived cells are immature and resemble fetal cells. This is true for iPSC-
derived neurons (137), hepatocytes (150), and cardiomyocytes (50). For example, iPSC-derived cardiomyocytes have
underdeveloped calcium handling and contraction (116), and their gene expression profiles resemble first-trimester
fetal hearts (170). This immaturity casts doubt on whether discovered gene regulatory networks are relevant to adult
tissues and diseases that manifest in adulthood. Efforts to promote maturity include optimizing culturing substrates
and conditions (171, 172), exposing the cells to biophysical or electrical stimulation (173), as well as supplementing
the culture medium with molecular signaling cues and trophic factors (21, 174).

Another limitation is that 2D iPSC cultures do not capture tissue-level features, such as 3D geometries and
cell–cell interactions (175). To address this, efforts are being made to capture essential missing interactions in
tractable iPSC models using organoid and tissue-on-a-chip approaches (176). These engineering efforts attempt
to create 3D cellular models that incorporate defined geometries or tissue microstructures (119, 177), and they
can further incorporate multiple cell types that make up a resident tissue, including endothelial and myocyte cells
(178) or astrocytes and neurons (179). These engineered systems have been demonstrated to mimic the heart, brain,
liver, kidney, and other tissues (180, 181). However, a drawback is a further increase in technical variations and a
decrease in throughput for large iPSC panels. Finally, the life histories and environmental exposures of individuals
are not captured and need to be reintroduced in vitro. A clear consensus has yet to emerge on whether iPSCs
reprogrammed from young and old individuals reset cellular age (182, 183).

continued improvements in iPSC models (see the sidebar titled Current Limitations and Ongoing
Refinement of iPSC Models) as well as the falling costs of sequencing, one can envision that
iPSC-based systems biology will become increasingly valuable for studies of disease mechanisms.

To make iPSC panels more accessible to biomedical researchers, we believe there is a need to
improve the standardization and accessibility of cell line material and data. The influx of omics
big data has prompted technical and policy advances to make biomedical data science findable,
accessible, interoperable, and reusable (or FAIR). A parallel effort in iPSC democratization will
include the adoption and free sharing of standardized cell lines, the adoption of standardized
nomenclature, and open data from iPSC model studies. Provided that the iPSC lines used for
association studies are made publicly available, iPSC panels would constitute an additive resource
over time. As new sequencing techniques become more accessible in the future, new data acquired
across these standard iPSC lines can be analyzed within the context of genotype and transcriptome
data. This collaborative systems genetics model has yielded biological insights for preclinical
studies in rodent models [such as the Hybrid Mouse Diversity Panel (168) and the Collaborative
Cross (169)]. With openly accessible iPSC lines from consortiums and individual biobanks, we
foresee iPSC panels will have similar impacts on human studies.
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163. Fiers MWEJ, Minnoye L, Aibar S, Bravo González-Blas C, Kalender Atak Z, Aerts S. 2018. Mapping

gene regulatory networks from single-cell omics data. Brief. Funct. Genom. 17(4):246–54
164. Chan TE, Stumpf MPH, Babtie AC. 2017. Gene regulatory network inference from single-cell data

using multivariate information measures. Cell Syst. 5(3):251–67.e3
165. Dixit A, Parnas O, Li B, Chen J, Fulco CP, et al. 2016. Perturb-seq: dissecting molecular circuits with

scalable single-cell RNA profiling of pooled genetic screens. Cell 167(7):1853–66.e17
166. Jaitin DA, Weiner A, Yofe I, Lara-Astiaso D, Keren-Shaul H, et al. 2016. Dissecting immune circuits

by linking CRISPR-pooled screens with single-cell RNA-seq. Cell 167(7):1883–96.e15
167. Uosaki H, Cahan P, Lee DI, Wang S, Miyamoto M, et al. 2015. Transcriptional landscape of cardiomy-

ocyte maturation. Cell Rep. 13(8):1705–16
168. Lusis AJ, Seldin MM, Allayee H, Bennett BJ, Civelek M, et al. 2016. The hybrid mouse diversity panel:

a resource for systems genetics analyses of metabolic and cardiovascular traits. J. Lipid Res. 57(6):925–42
169. Flint J, Eskin E. 2012. Genome-wide association studies in mice. Nat. Rev. Genet. 13(11):807–17
170. van den Berg CW, Okawa S, Chuva de Sousa Lopes SM, van Iperen L, Passier R, et al. 2015. Transcrip-

tome of human foetal heart compared with cardiomyocytes from pluripotent stem cells. Development
142(18):3231–38

171. Zhang ZN, Freitas BC, Qian H, Lux J, Acab A, et al. 2016. Layered hydrogels accelerate iPSC-derived
neuronal maturation and reveal migration defects caused by MeCP2 dysfunction. PNAS 113(12):3185–90

172. Parikh SS, Blackwell DJ, Gomez-Hurtado N, Frisk M, Wang L, et al. 2017. Thyroid and glucocorticoid
hormones promote functional T-tubule development in human-induced pluripotent stem cell–derived
cardiomyocytes. Circ. Res. 121(12):1323–30

173. Ribeiro AJS, Ang YS, Fu JD, Rivas RN, Mohamed TMA, et al. 2015. Contractility of single cardiomyo-
cytes differentiated from pluripotent stem cells depends on physiological shape and substrate stiffness.
PNAS 112(41):12705–10

174. Tu C, Chao BS, Wu JC. 2018. Strategies for improving the maturity of human induced pluripotent stem
cell–derived cardiomyocytes. Circ. Res. 123(5):512–14

175. Horvath P, Aulner N, Bickle M, Davies AM, Nery ED, et al. 2016. Screening out irrelevant cell-based
models of disease. Nat. Rev. Drug Discov. 15(11):751–69

176. Tzatzalos E, Abilez OJ, Shukla P, Wu JC. 2016. Engineered heart tissues and induced pluripotent stem
cells: macro- and microstructures for disease modeling, drug screening, and translational studies. Adv.
Drug Deliv. Rev. 96:234–44

418 Lau · Paik ·Wu



D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lre
vi

ew
s.

or
g.

  G
ue

st
 (

gu
es

t)
 IP

:  
10

4.
28

.4
8.

72
 O

n:
 W

ed
, 0

2 
O

ct
 2

02
4 

18
:5

8:
34

PM14CH16_Wu ARI 10 December 2018 12:26

177. Abilez OJ, Tzatzalos E, Yang H, Zhao M-T, Jung G, et al. 2018. Passive stretch induces structural and
functional maturation of engineered heart muscle as predicted by computational modeling. Stem Cells
36(2):265–77

178. Giacomelli E, Bellin M, Sala L, van Meer BJ, Tertoolen LGJ, et al. 2017. Three-dimensional cardiac
microtissues composed of cardiomyocytes and endothelial cells co-differentiated from human pluripotent
stem cells. Development 144(6):1008–17

179. Kuijlaars J, Oyelami T, Diels A, Rohrbacher J, Versweyveld S, et al. 2016. Sustained synchronized
neuronal network activity in a human astrocyte co-culture system. Sci. Rep. 6:36529

180. Dutta D, Heo I, Clevers H. 2017. Disease modeling in stem cell–derived 3D organoid systems. Trends
Mol. Med. 23(5):393–410

181. Liu C, Oikonomopoulos A, Sayed N, Wu JC. 2018. Modeling human diseases with induced pluripotent
stem cells: from 2D to 3D and beyond. Development 145(5):dev156166

182. Lo Sardo V, Ferguson W, Erikson GA, Topol EJ, Baldwin KK, Torkamani A. 2017. Influence of donor
age on induced pluripotent stem cells. Nat. Biotechnol. 35(1):69–74

183. Sharma A, Diecke S, Zhang WY, Lan F, He C, et al. 2013. The role of SIRT6 protein in aging and
reprogramming of human induced pluripotent stem cells. J. Biol. Chem. 288(25):18439–47

www.annualreviews.org • Systems-Wide Approaches in iPSC Models 419


