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Atlas of Exosomal microRNAs Secreted
From Human iPSC-Derived Cardiac

Cell Types

crine communications and regenerative therapies. However, current under-

standing of how exosomes mediate cellular signaling is incomplete, in part
because the contents of exosomes from different cardiac cell types are poorly de-
fined. To learn what signals cardiac cells release, we examined the microRNA (miR-
NA) compositions secreted in exosomes from human induced pluripotent stem
cells (iPSCs) and 3 major iPSC-derived cardiac cell types.

With approval by the Stanford University Institutional Review committee and
informed consent, human iPSC lines from 2 healthy donors were reprogrammed
in the Stanford Cardiovascular Institute Biorepository and differentiated into car-
diomyocytes (iPSC-CMs), endothelial cells (iPSC-ECs), and cardiac fibroblasts (iPSC-
CFs) using established protocols.! Low yield has been a bottleneck in elucidating
the composition and function of extracellular exosomes. To boost isolation yields,
we applied a mechanical-sorting device (ExoTIC) that isolates exosomes from small
volumes of culture medium.?3 Briefly, the device is an engineered fluidic system
that delivers culture medium through nanoporous membranes to selectively cap-
ture vesicles at 50 to 200 nm in diameter. We validated the extracted exosomes us-
ing nanoparticle tracking analysis and immunoblots, and confirmed superior yield
over conventional precipitation methods (Figure A). We then isolated total RNA
(=18 nt) from exosomes of 2 biological replicate lines for library generation and
small RNA sequencing on an lllumina NextSeq platform. Sequencing reads were
mapped to GRCh38 human reference genome after adaptor clipping and anno-
tated against miRBase v.22.1 coordinates using conventional pipelines.

From the data, we identified 120 miRNAs (mature or stem loop) from 94 miRNA
genes to be secreted in the analyzed cell types (normalized read counts =10 in
both lines). The exosomal miRNA profiles revealed that (1) let-7 miRNA precursors,
which are suppressed by Lin28, are depleted in iPSC secretomes as expected; (2)
only a subset of total cellular miRNAs are secreted (eg, both miR-155 and miR-143
are preferentially found in intracellular over exosomal pools in iPSCs); (3) a com-
mon core of mMiRNAs is secreted by all 3 cardiac cell types (eg, miR-320); and (4)
importantly, we found distinct enrichment or depletion of different mature miR-
NAs in each exosome type (Figure B). For instance, we found that miR-1, critical
for cardiac development and pathology, is only secreted by iPSC-CMs in our data.
Using a published human miRNA atlas,* we next compared total tissue expression
of miR-1 in 17 different tissues, which showed miR-1 to be specific to striated
muscles (Figure C). Similarly, miR-302¢c, known to be specific to pluripotent cells,
is enriched in iPSC-derived vesicles® and also appears to be enriched in the bone,
likely reflecting bone marrow hematopoietic stem cells.* Finally, miR-155 is primar-
ily secreted in iPSC-CFs in our data and is diffusely expressed in the body in the
miRNA atlas.*

Cardiac-derived exosomes have received intense interest for their roles in para-
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Figure. Distinct exosomal miRNAs secreted by iPSCs and differentiated cardiac cell types.

A, Experimental schema. Human iPSC lines from 2 healthy donors were differentiated into iPSC-CMs, iPSC-ECs, and iPSC-CFs, from which 10 mL of culture medi-
um per =1M cells were collected after 48 hours and processed for small RNA sequencing. An engineered device (ExoTIC) specifically captured extracellular vesicles
50 to 200 nm in diameter and improved RNA yield by >3-fold over conventional PEG precipitation. Line chart: distribution of particle sizes isolated from the culture
medium of each cell type using nanoparticle tracking. Bar chart: RNA yield in ng/mL. B, Small RNA sequencing uncovered 120 miRNAs secreted from the cultured
cells, including miRNAs enriched from specific cell types. Heat map represents quantile-normalized read counts of commonly secreted miRNAs or standardized
counts of iPSC-CF—, iPSC-CM-, or iPSC-enriched mature miRNAs (=10 counts for both biological replicates, >5-fold enrichment over other tested cell types for
enriched miRNAs; n=2 biological x 2 technical replicates). Let-7 family precursors, known to be miRNA markers of differentiated (ie, nonpluripotent) cells, were
depleted in iPSCs. C, We selected a subset of enriched, secreted, mature miRNAs and compared their total tissue expression in 17 different tissues in a published
human miRNA atlas and graphed the abundance of miR-1, miR-155, and miR-203c in the body. Data on other miRNAs are accessible on our Web application
(https://bit.ly/heartsecretome). D, upper, Coculture setup between iPSC-CMs and various numbers of iPSCs for 48 hours. Plating was validated using CM-specific
(TNNT2) and iPSC-specific (TRA-1-60) antibodies in flow cytometry. Numbers: cell percentage in gated regions. Lower, Secretion of miR-302a and miR-302d in the
culture medium scaled with decreasing numbers of plated iPSCs (from 50 000 down to 10) cocultured with iPSC-CMs over >2 orders of magnitude. y axis, relative
abundance of miRNA compared to 5x10° iPSCs plated without iPSC-CMs. Secretion of miR-16 remained constant in these coculture samples. E, The ratiometric
quantity between miR-16 and miR-302a or miR302d inversely reflects the ratio of iPSCs in iPSC-CMs coculture (Top, miR-16/miR-302a; bottom, miR-16/miR-
302d). R? indicates goodness-of-fit of linear model between log(abundance) vs log(iPSC counts). iPSC-CF indicates induced pluripotent stem cell-derved cardiac
fibroblast; iPSC-CM, induced pluripotent stem cell-derived cardiomyocyte; iPSC-EC, induced pluripotent stem cell-derived endothelial cell; miRNA, microRNA; n.s.,
no staining; and PEG, polyethylene glycol.

Circulation. 2020;142:1794-1796. DOI: 10.1161/CIRCULATIONAHA.120.048364 November 3,2020 1795

(]
(=]
=
=
m
[72]
o
(=]
=
o
m
—
(]
m




Ll
()
—
(7]
[=]
—
(=]
-
(7]
Ll
o
[
(=]
o

720z ‘8z Jequieides uo Aq Bio'sfeulno feye//:dny wouy papeojumoq

Chandy et al

Taken together, these data suggest that exosomal
miRNAs reflect the biology of their cell type of origin
yet are also distinct from the intracellular total miRNA
pools. Additionally, we also found several secreted car-
diac miRNAs with still unclear roles in the cardiovascular
system, including miR-423 and miR-125a, suggesting
they may have function in intercellular communication.
To facilitate data sharing, we created an interactive Web
application that empowers users to perform explorato-
ry analysis and download the relative abundance of all
exosomal miRNAs discovered in our experiment, freely
accessible at https:/bit.ly/heartsecretome. Sequencing
data are on GEO (GSE149290).

To explore the utility of this secretome map, we
asked whether the detected miRNAs scale quantita-
tively with cell counts, and, if so, whether they can be
utilized to assess the compositions of heterogeneous
cell mixtures. To test this, we cocultured decreasing
numbers of undifferentiated iPSCs (102-10°) in a mix-
ture of iPSC-CMs (total 10° cells) over 48 hours. After
verifying cell plating with flow cytometry, we found
that the secretion of miR-302a and miR-302d into the
culture medium decreased quantitatively and propor-
tionally with diminishing numbers of plated iPSCs >2
orders of magnitude, with a detection limit between
10 to 100 cells (Figure D). Because the total cell counts
in the cocultures were comparable, we showed that
a non—iPSC-enriched miRNA (miR-16) remained invari-
ant to iPSC proportions. We next derived a ratiomet-
ric quantity between a constitutively expressed miRNA
versus iPSC-enriched miRNA (eg, miR-16/miR-302a or
miR-302d) and showed that this unitless measurement
scaled inversely to the proportion of iPSCs within the
assessed dynamic range (Figure E). Hence, we propose
that this exosomal miRNA ratio may provide a new,
facile, and nondestructive readout of iPSC contami-
nant after differentiation, which would be useful for
regenerative medicine, disease modeling, and drug
screening.

In summary, we present an atlas of exosomal miR-
NAs from human iPSCs and 3 differentiated cardiac
cell types. We found distinct secretory profiles from
each cell type, supporting the importance of direct
analysis of isolated exosomes. This resource may avail
understanding of exosome biology and presents a po-
tential method to monitor the purity of cardiac cell
preparations.
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