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Abstract

Protein and mRNA levels correlate only moderately. The availability of proteogenomics data

sets with protein and transcript measurements from matching samples is providing new

opportunities to assess the degree to which protein levels in a system can be predicted from

mRNA information. Here we examined the contributions of input features in protein abun-

dance prediction models. Using large proteogenomics data from 8 cancer types within the

Clinical Proteomic Tumor Analysis Consortium (CPTAC) data set, we trained models to pre-

dict the abundance of over 13,000 proteins using matching transcriptome data from up to

958 tumor or normal adjacent tissue samples each, and compared predictive performances

across algorithms, data set sizes, and input features. Over one-third of proteins (4,648)

showed relatively poor predictability (elastic net r� 0.3) from their cognate transcripts.

Moreover, we found widespread occurrences where the abundance of a protein is consider-

ably less well explained by its own cognate transcript level than that of one or more trans

locus transcripts. The incorporation of additional trans-locus transcript abundance data as

input features increasingly improved the ability to predict sample protein abundance. Tran-

scripts that contribute to non-cognate protein abundance primarily involve those encoding

known or predicted interaction partners of the protein of interest, including not only large

multi-protein complexes as previously shown, but also small stable complexes in the prote-

ome with only one or few stable interacting partners. Network analysis further shows a com-

plex proteome-wide interdependency of protein abundance on the transcript levels of

multiple interacting partners. The predictive model analysis here therefore supports that pro-

tein-protein interaction including in small protein complexes exert post-transcriptional influ-

ence on proteome compositions more broadly than previously recognized. Moreover, the

results suggest mRNA and protein co-expression analysis may have utility for finding gene

interactions and predicting expression changes in biological systems.
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Author summary

The abundance of mRNA is often measured as a surrogate variable of protein levels, but

how well the mRNA level of different genes correlate with their protein across samples

remains incompletely understood. Here we trained machine learning models over large

RNA sequencing and mass spectrometry data from up to 8 cancer types in the CPTAC

data sets to evaluate how well protein level variances across samples can be predicted from

their transcripts. Despite voluminous data, up to one-third of genes shows poor mRNA-

protein correlation suggesting their protein abundance is not primarily regulated from

cognate transcripts. The inclusion of mRNA level information from protein interaction

partners into the prediction models substantially improved prediction performance for a

subset of genes, suggesting their protein abundance may be primarily regulated post-tran-

scriptionally through protein-protein interactions. Notably, these proteins involve not

only subunits of large multi-protein complexes such as the ribosome as previously sus-

pected, but many proteins that form stable interactions with one or few other partners,

including the propionyl-CoA carboxylase, mitochondrial calcium uniporter, calcineurin,

and others. The results add to emerging evidence of independent regulation of protein

levels from their cognate transcripts and suggest avenues to improve the interpretation of

transcriptomics data.

Introduction

Mounting evidence now shows that protein levels correlate imperfectly with the levels of their

cognate transcripts [1–3]. More specifically, although a robust trend exists over the log scale

between protein and mRNA measurements across genes, genewise correlation between pro-

teins and their transcripts is much poorer across observations (samples, tissues, cell types, or

subjects). This has been taken to indicate that while abundant proteins have abundant tran-

scripts, transcript variance within a group of samples does not necessarily predict or signify

corresponding protein changes [4]. Multiple factors are known to contribute to this non-cor-

relation. Technical variations are often cited as a substantial source of non-correlation, as tran-

scriptomics and proteomics measurements carry different sources of error and proteins with

lower baseline variance in mass spectrometry have been shown to be better predicted by their

transcripts [5]. Nevertheless, a substantial portion of protein variance remains unexplained

and is likely attributable to biological and biophysical regulations. It has been well recognized

that large multi-protein complexes could invoke a buffer effect on protein levels [6,7], as a mul-

timeric complex only fully folds and functions when all subunits are present, any induction of

the transcript for a single subunit would not per se lead to additional complexes, and resulting

supernumerary proteins are thought to be quickly degraded [6,8]. Lastly, numerous post-tran-

scriptional and post-translational mechanisms are known to modulate protein levels such as

the gene- and context-dependent translation rates of mRNAs [9,10], the differential half-life

and temporal distributions between mRNAs and proteins [2,11], and proteolytic degrading of

translated proteins in the cell.

The emergence of large-scale proteogenomics data from matching samples has created

new opportunities to revisit protein-level predictions from transcriptomics data. The abun-

dance of a protein may be the function of one or more transcripts. Most notably, available data

sets from the Gene Tissue Expression (GTEx) project [7] and the Clinical Proteomic Tumor

Analysis Consortium (CPTAC) [12], have spurred the use of machine learning approaches to

evaluate how well one can predict protein level variance given a set of transcriptomics data,
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with the goal of developing strategies and algorithms that can boost the performance of protein

level predictions. This culminated in a community based effort in the CPTAC Proteogenomics

Dream Challenge Task 2, which tasked participants with predicting protein abundances from

mRNA and genetic data from CPTAC ovarian and breast cancer samples [12]. The results sug-

gest that protein level prediction remains a challenging and not fully resolved problem, as

many community-submitted models did not improve substantially the baseline model, which

is an elastic net taking into account all mRNA features available and has a median Pearson’s

correlation coefficient (r) of 0.47 for ovarian cancer. Nevertheless, general lessons have

emerged from the top performing models; for instance: (i) ensemble methods generally per-

formed well [12–14]; (ii) combining observations from the ovarian and breast cancer datasets

to borrow information from each other led to improved predictions [12]; and (iii) judicious

feature pre-selection based on prior biological knowledge such as protein-protein interactions

improved prediction performance [12,14]. Notwithstanding these general observations, the

current literature reflects that much remains to be learned about the relationship of mRNA

and protein regulations in different genes and whether there are fundamental limits to how

well mRNA abundance reflects that of their protein counterpart. This problem has several

practical importances. Proteins carry out the majority of biological processes and hence are

arguably the most relevant molecules to biological states. Despite rapid advances in proteomics

techniques, bulk and single-cell RNA sequencing remain the most commonly used methods to

interrogate gene expression status on a large scale and will likely remain so in the foreseeable

future. Transcriptomics experiments often operate on the implicit assumption that identified

differential regulation exert their biological effects via their cognate proteins, hence it is impor-

tant to better understand the relationships between protein and mRNA levels to aid in data

interpretation and determining potential protein level changes given a set of transcriptomics

data. Alternatively, knowing the genewise difference in how well a gene’s transcript can predict

its protein counterpart may be useful for filtering and prioritizing biologically relevant tran-

script signatures [15].

Here we revisit the predictability of protein levels from transcriptomics data. Since the

time of the Dream Challenge, considerably more proteogenomics data have been made pub-

licly available which increases the number of observations available for modeling training, as

well as the number of proteins for which there is mass spectrometry information available.

Individual CPTAC cancer studies have analyzed the protein and mRNA correlation in indi-

vidual tumors and normal adjacent tissues and nominated specific pathways whose correla-

tions are particularly poor. Additional re-analysis and meta-analysis studies have outlined

the distribution of prediction performances across algorithms, and generally conclude there

is some statistical enrichment of biological processes or protein features among proteins that

are poorly predicted by their own transcript level, e.g., metabolic and essential proteins or

proteins belonging to complexes [12,16]. Nevertheless, a granular analysis remains unreal-

ized in the literature that interrogates the identity and regulatory modality of individual pro-

teins in depth. Accordingly, our goals here are to (1) evaluate how the increasing data size

from combining CPTAC tumor data sets affects the performance of prediction algorithms

and feature selection strategies; and (2) interpret prediction models to assess the importance

of transcript features in individual protein abundance regulation. The results suggest that

the incorporation of transcript level information from protein interacting partners played a

substantial role in predicting protein levels, and moreover, there are widespread instances in

the proteome where the abundance of a protein correlates primarily with a trans locus tran-

script than its own cognate transcript, which has implications for gene expression profiling

studies.
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Methods

Data retrieval and processing

Gene expression data were obtained from public data from the CPTAC project and included

data from 8 cancer types: ovarian cancer (OV) [17], breast cancer (BR) [18], endometrial carci-

noma (EN) [19], colorectal cancer (CO) [20], lung adenocarcinoma (LUAD) [21], clear cell

renal carcinoma (CCRCC) [22], glioblastoma (GB) [23], and lung squamous cell carcinoma

(LSCC) [24]. The cumulative inclusions of each cancer type in the order above are sequentially

referred to as CPTAC_2 to CPTAC_8 in the manuscript, such that CPTAC_2 refers to the

union of ovarian and breast cancer (OV + BR); CPTAC_3 refers the union of ovarian, breast,

and endometrial cancer (OV + BR + EN); and so on. The mRNA and protein level expression

data from the CPTAC cancer types was retrieved using the cptac package v.0.9.7 [25] in Python

3.9. Each column of the quantitative measurement of the transcriptomics data acted as an

independent variable or feature variable whereas the normalized quantitative measurement of

a particular protein of interest acted as the single dependent or target variable in the protein

model. Retrieved mRNA level gene expression data are standardized using the scikit-learn

simple scaler. The proteomics data were likewise downloaded using the cptac package as pre-

sented in the data, and were stable isotope labeled relative quantitative mass spectrometry data

presented as normalized log ratios across samples as in the original studies. All tumor samples

were labeled using Thermo tandem mass tag (TMT) 10- or 11- plex isobaric tags for MS2

quantification, with the exception of the ovarian cancer data, which were labeled with Sciex

iTRAQ isobaric tags for MS2 quantification, and the colon cancer data, which contained both

label-free and TMT quantifications. The retrieved log ratios across samples were not further

transformed.

For each protein for which predictions are to be made, we retrieved five separate feature

sets:

1. Single: Using only the single transcript coding for the protein of interest for model training,

then running the pipeline to train a model for each protein separately.

2. CORUM: Using the transcripts of all proteins belonging to the same protein complex as the

protein of interest, if any, in CORUM v.3.0 [26], where protein complexes are defined as

two or more proteins that interact physically in a quaternary structure. These transcripts

then act as independent variables (features) to predict the target variable (protein of inter-

est). The pipeline is then run to train a model for each protein separately.

3. STRING 800: Using the transcripts of interacting partners of the protein of interest as

input features. Interacting partners are retrieved from STRING v.11 [27], which documents

functional associations including physical interactions, genetic interactions, co-expression,

co-occurrence, and other associations. The STRING combined score represents the overall

likelihood of interactions. Interacting pairs with a STRING combined score of 800 or above

(high-confidence) are included. The pipeline is then run to train a model for each protein

separately.

4. STRING 200: As above, except that interacting pairs with a STRING combined score of

200 or above (low- to high-confidence) are included. The pipeline is then run to train a

model for each protein separately.

5. Transcriptome: A transcriptome-wide model where all qualifying transcripts in the data

set are included as features, prior to the removal of low-variance features. The pipeline is

then run to train a model for each protein separately.
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Model training and evaluation

For each feature set, missing values for feature variables are imputed using median imputation,

followed by the removal of features with variance of 0.2 or below. Models are not trained for

proteins with fewer than 50 empirical observations. The data are then split 80:20 into training

and test sets. No imputation or additional standardization was performed on the proteomics

data. The input and target data from the training set are then used to train a model using either

linear regression, elastic net with 5-fold cross validation, random forest regressor, or gradient

boosting regressor in scikit-learn v.1.0 [28], with the following specified parameters: random

forest number of estimators: 500, criterion: squared error, max depth: 4; elastic net cross vali-

dation L1 ratio: 0.1, 0.5, 0.9, 0.95, cv: 5, tolerance: 1e–3, max iterations: 2000; gradient boost-

ing: n_estimators: 1000, max_depth: 3, subsample: 0.5, min_samples_splot: 5, learning_rate:

0.025. The trained models are saved as individual objects which include the predicted protein

levels in the training set as well as the contribution of each feature to the overall prediction

(coefficients in linear regression and elastic net; feature importance and trees in random forest

and gradient boosting regressors), and are applied to predict protein levels in the test set data.

Further interpretation of feature importance was performed using Shapley values with the aid

of the shap package v.0.40.0 [29], or with the Boruta algorithm using the Boruta_Py package

v.0.3 [30].

To evaluate model performance, the Pearson’s correlation coefficients between predicted

(ŷ) and actual (y) protein values are calculated individually for the train and test set data for

each protein model using the numpy corrcoef function, or defaulted to 0 if the standard devia-

tion of predicted values is 0. Goodness-of-fit (R2) is calculated using scikit-learn.metrics.

r2_score function. Normalized root mean square errors (NRMSE) are calculated as follows:

NRMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn� 1

i¼0

ðyi � ŷiÞ
2
�

1

ðmaxðyÞ � minðyÞÞ

s

Network construction and analysis

To construct the protein regulation network, we first constructed an overall graph from a sub-

set of transcript-protein relationships using the networkx package [31] in Python 3.9. Qualify-

ing proteins are those whose prediction increased with the inclusion of more features, such

that in the STRING or CORUM feature set, the correlation coefficient between the elastic net

predicted and actual protein levels is greater than the single feature elastic nets by at least 0.25.

Transcripts that contribute to the prediction of these proteins are therefore included if their

elastic net coefficient a and random forest feature importance b are greater than a certain

threshold, which was set to a = 0.05, b = 0.05 for the CORUM feature set and a = 0.2, b = 0.05

for the STRING feature set.

In the data, the list of proteins and their corresponding transcriptomics features act as the

nodes and the interaction pattern is a function of the correlation value and feature importance

between a protein and the transcriptomics. The direction of the edge therefore flows from

transcriptomics to protein. All the text files for each protein obtained from the computational

pipeline are compiled into a n overall data frame. This data frame is then converted into the

form of a network data frame. In this data frame, all the protein becomes the target node, and

the transcriptomics corresponding to the protein becomes the source node. Additional column

of this data frame consists of the weight between a protein and its predicting transcripts, which

was calculated using the sum of the [–1,1] clipped elastic net coefficient and the descending

percentile rank of the random forest feature importance. An overall directed graph G(V, E) is

then constructed from the edge lists with proteins as targets and their predicting transcripts as

PLOS COMPUTATIONAL BIOLOGY Widespread post-transcriptional regulation of protein abundance

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010702 November 10, 2022 5 / 27

https://doi.org/10.1371/journal.pcbi.1010702


sources, such that it is a function of vertices V which depict protein and/or transcript nodes

and edges E which flow in the direction from the transcript sources to the protein targets.

Using the built-in functions in networkx, this overall directed graph is divided into weakly

connected components, which resulted in individual subgraphs such that for the overall net-

work G = (V, E) where V is the vertices and E is the edge then a subgraph of G = (V, E) is a

graph S = (V0, E0) where vertex set V0 � V and edge set E0 � E connects only nodes of V0. We

then used Cytoscape v.3.9 [32] to visualize and perform additional topology analysis and func-

tional annotations of each subgraph. HiDef persistent community detection [33] was per-

formed with the aid of the CyCommunityDetection Cytoscape plugin [34] using the Leiden

algorithm [35]. Functional enrichment of individual communities was performed using

CyCommunityDetection with the g:Profiler web server [36]. Hub nodes were identified with

the aid of the CytoNCA [37] Cytoscape plugin using the betweenness centrality algorithm with

the top 10% of proteins with the highest centrality defined as hubs. Functional enrichment

analysis on the hub proteins was performed with the aid of the stringApp [38] Cytoscape

plugin using default settings and 5% false discovery rate cutoff.

Additional data analysis

Additional data analysis, statistics, and visualization were performed in R v.4.1.1 with the aid

of the ReactomePA [39], clusterProfiler [40], and circlize [41] packages; and in Python 3.9

with the aid of the seaborn [42] package.

Results

Feature selection improves the prediction of protein abundance from

transcriptome data

We first evaluated whether increasing proteogenomics data depth would impact optimal fea-

ture selection strategies and algorithms in prediction protein levels. To do so, we retrieved

data from up to 8 tumor types from the CPTAC data set and processed the data to collage a

data table with matching protein and transcript data from each tumor sample. The data sets

were ordered such that breast and ovarian cancers as in the DREAM challenge were combined

first, then other cancer types were added according to the order of their availability (see Meth-

ods). We trained models to predict the target variable (the normalized labeled mass spectrome-

try measured abundance of a particular protein) from various input features (transcriptomics

data from the matching samples) using either a multiple linear regression, elastic net, and ran-

dom forest regressor in scikit-learn. To compare the performance of prior knowledge based

feature selection, we further compared supplying the models with input features based on (1)

only RNA level data the corresponding transcript of the target variable protein (single feature)

(2) self transcript plus the transcript of any protein within the same protein complex of the tar-

get variable protein in CORUM (CORUM feature); (3) self transcript plus the transcript of any

proteins that are high-confidence protein interaction partners including physical interactions

and other inferred association from STRINGdb (STRING 800 feature); (4) self transcript plus

the transcript of any proteins that are low to high- confidence protein interaction partners

from STRINGdb; (5) using all qualifying transcripts (transcriptome features).

We next compared the genewise prediction performance of the transcriptome using the

test set correlation coefficient between predicted and actual mass spectrometry protein values,

R2, and NRMSE as described (Fig 1A and S1 Table). The elastic nets and random forest mod-

els performed better with more features and more data. In contrast, a multiple linear regres-

sion model performed little better with more included features and in fact failed to predict
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protein levels when a large number of features are given. For the elastic net and random forest

models, performance gains began to saturate with additional data sets (r: 0.388 and 0.402,

respectively) but further increased when larger feature sets were given (r: 0.599 for both) (Figs

1A and S1). As a comparison, we also evaluated the performance of the models in single cancer

data (i.e., in each data set alone) (S2A Fig) as well as combined the data sets in the order of

descending performance (S2B Fig). The single cancer models suggest that a prediction perfor-

mance of up to median r of 0.691 is achievable using the Transcriptome wide feature set, and

0.69 in the STRING 200 feature set (random forest, CCRCC), albeit in a single cancer type

only. In both the single cancer type and reordered combination comparisons, the observation

remains true in all cases that the inclusion of protein interactor features further increased the

prediction performance of both the elastic net and random forest algorithms. Hence, substan-

tial prediction improvements resulted from the inclusion of other transcripts (number of fea-

tures) over the gain in data set sizes (number of observations) or the use of algorithms

(random forests) that can account for non-linearity. This is corroborated when considering

the feature sets across the largest data set collection used (CPTAC_8 from 8 cancer types).

Fig 1. Genewise dispersion of protein predictability from transcriptome data. Box plots of test set correlation coefficients between the transcript-predicted

and actual protein level for each protein are shown across five feature sets (column: single/self transcript, CORUM interactors, STRING 800 high-confidence

associated proteins; STRING 200 low-confidence associated proteins, and all transcripts) and three algorithms (multiple linear regression, elastic net, and

random forest). In each plot, the x axis denotes the number of additive CPTAC data sets used to train the models as described in Methods; box: interquartile

range; whiskers: +/– 1.5 IQR; notch: SEM.

https://doi.org/10.1371/journal.pcbi.1010702.g001
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Model performance continued to increase as more features were added in (median r from

0.398 to 0.599), and the number of non-predictors and negative predictors decreased while

overall dispersion of predictability also decreased.

From the baseline self-transcript model in the CPTAC_8 data set containing 8 cancer types,

we found that strong protein predictors (r� 0.6; 2,008 genes) are enriched in genes participat-

ing in membrane proteins and cell junctions (Fig 2A and S2 Table), whereas poor protein pre-

dictors (r� 0.3; 4,648 genes) are enriched in multiple large multi-protein complexes (Fig 2B

and S3 Table). Hence the analysis of CPTAC_8 data set confirms prior observations that pro-

tein complex membership presents a major source for transcript-protein non-correlation.

We next compared the genewise performances between the STRING feature elastic net

model and the self transcript model to investigate the observed performance gain at a more

granular level. Considering the 13,239 genes with protein-level prediction and with at least one

STRING interactor, on average, each gene in the STRING model has a median of 273 [158–

457] features, compared to 1 feature in the self transcript model. Incorporation of STRING fea-

tures led to an average increase in test set correlation coefficients of 0.16 [IQR: 0.07–0.27] (S4

Table). There is a significant positive correlation between the number of features and predic-

tion improvements (Pearson’s r 0.21, P: 8.2e–131) (S3A Fig), a relationship which persisted

Fig 2. Pathway enrichment of proteins with good and poor predictability. A. Tree plots showing the clustering and relationships of gene ontology terms that

are significantly enriched among proteins whose abundances are well predicted by their own transcripts (r� 0.6). B. Tree plots of terms enriched among

proteins whose abundances are poorly predicted by their own transcripts (r� 0.3).

https://doi.org/10.1371/journal.pcbi.1010702.g002
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when only genes with 10 or more interactors were included S3B Fig). A similar observation is

seen in the CORUM feature set where the number of transcript features (i.e., CORUM com-

plex interactors) of a particular protein is positively correlated with improvement in predict-

ability of protein abundance (S3C and S3D Fig). A functional enrichment analysis of proteins

with strong improvements in prediction (difference in STRING vs. self-feature in test set pre-

dicted-actual correlation coefficient (Δr)� 0.25) showed a strong enrichment in large multi-

protein complexes including the ribosome, mitochondrial ribosome, RNA polymerase, and

spliceosome (S5 Table) similar to the results from poor predictors. This corroborates that the

non-correlation between transcripts and proteins of multi-protein complexes levels can be

partially rescued by considering the information of interacting partner transcripts, which

could participate in post-transcriptional regulations such as by being the stoichiometrically

limiting transcript or crucial assembly parts, such that the transcript level of one subunit can

regulate the protein level of other subunits.

Overall, these results are consistent with information about protein level residing both in

the transcripts of the genes encoding the protein as well as the protein association partners.

Moreover, taking into consideration the number of features in the STRING 800 and STRING

200 sets (median feature sizes of 10 [IQR: 2–48] and 266 [IQR: 149–451], respectively) com-

pared to the size of the whole transcriptome feature set, the results indicate that a substantial

portion of performance gains over the single-transcript feature set is already achievable from

relatively few selected prior features.

Proteins whose abundances are predicted by non-cognate transcripts are

common

We next examined more closely the underlying causes behind the performance gains of pro-

tein predictions in the CORUM and STRING feature sets. To do so, we examined the genes

whose protein prediction performance from transcripts increased substantially (Δr� 0.25)

after the incorporation of additional transcript features. In total, we observed 484 such pro-

teins in the CORUM feature sets, and 3,272 proteins from the STRING data set, representing

over 24% of all examined proteins. These numbers increase further when a less conservative

Δr threshold of� 0.15 is used (6,123 proteins in the STRING dataset, 946 in CORUM), alto-

gether suggesting non-cognate transcript contributions to protein level are common at the

proteome level. Upon inspecting the model feature coefficients (elastic nets) and feature

importance (random forests), we observed that a considerable portion of these proteins with

improved prediction are associated with (1) poor contribution from the self-transcript, and (2)

a substantial contribution from primarily a few non-cognate (i.e., trans locus) transcripts cod-

ing for other proteins (see below). In other words, although model performance continued to

increase with increased feature set sizes, the contributions of trans locus transcript features to

overall prediction performance is unevenly distributed, and are therefore attributable to a few

high contribution genes rather than a simple scaling with feature size. Notably, despite the

STRING feature set being substantially larger than the CORUM feature set, substantial contri-

butions from trans locus transcripts in the STRING feature set primarily involve transcripts

encoding proteins that form part of the same CORUM complex as the protein of interest itself,

suggesting that stable complex memberships play an outsized role in determining protein

levels.

To illustrate the poor predictive power of cognate transcripts on some proteins, we next

interrogated a subset of proteins where a non-self transcript has an outsized effect on the pro-

tein level of the proteins in the CORUM and STRING feature sets: Propionyl-CoA Carboxyl-

ase Subunit Beta (PCCB), C-X9-C Motif Containing 1 (CMC1), Proteasome Assembly
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Chaperone 2 (PSMG2), SMCR8-C9orf72 Complex Subunit (SMCR8), Mitochondrial Calcium

Uptake 2 (MICU2), and Protein Phosphatase 3 Regulatory Subunit B, Alpha (PPP3R1). PCCB

forms the propionyl-CoA carboxylase complex with two protein members, which breaks

down certain amino acids in the cell (Fig 3A). PCCB showed poor prediction by their own

self-transcripts (r:–0.008) but experienced high gains in test set correlation upon incorporating

additional transcript features in the CORUM (r: 0.483) and STRING (r: 0.692) models. CMC1

is an assembly factor that forms an early intermediate of the cytochrome c oxidase complex in

the mitochondrion with 14 documented protein members in CORUM (Fig 3B). Likewise,

CMC1 showed only moderate prediction by their own self-transcripts (r: 0.274, respectively)

but experienced high gains in test set correlation upon incorporating additional transcript fea-

tures in the CORUM (r: 0.615) and STRING (r: 0.564) models.

We then considered the transcriptomics and proteomics data distributions of the features

that had highest coefficients in the elastic net model from the CORUM feature set for PCCB

and CMC1. For PCCB, most protein-level predictions are recovered when the feature set

includes PCCA, which together with PCCB forms the stable propionyl-CoA carboxylase

enzyme that consists of six copies of PCCB and six copies of PCCA each. There is a remarkably

strong correlation with its propionyl-CoA carboxylase complex interacting partner PCCA at

the protein level (r: 0.957), but this correlation is almost entirely absent at the transcript level

(r: –0.059). This is partially explainable by the observation that PCCA transcript has a higher

level of variability and is also strongly correlated with the PCCB protein level. The total protein

level of PCCB is therefore primarily driven by PCCA rather than PCCB transcripts (Fig 4A).

In the case of CMC1, we found that MT-CO1 has the highest contribution to CMC1 protein

level (Fig 4B). MT-CO1 is the mitochondrial genome encoded subunit of complex IV that is

thought to act as the nascent scaffold around which the complex is assembled. CMC1 binds to

MT-CO1 during the formation of the early module known as MITRAC and is subsequently

released during assembly [43,44]. CMC1 transcript and protein levels are moderately corre-

lated with one another (r: 0.228). Again, CMC1 and MT-CO1 show poor co-expression at the

transcript (r: –0.017) level and an improved correlation at the protein (r: 0.339) level, whereas

MT-CO1 transcript is robustly correlated with the CMC1 protein level (r: 0.583), which sug-

gests the possibility that proteogenomic co-expression may reveal additional functionally

related protein pairs. Closer inspection suggests the possibility of a non-linear relationship

between MT-CO1 transcript and CMC1 protein where upon reaching a plateau, further

increases in MT-CO1 transcript does not correlate to further increase in CMC1 protein levels,

suggesting other transcripts may also contribute to CMC1 protein levels. Consistent with this,

other complex IV subunits also have non-negligible coefficients (in the elastic nets) or feature

importance (in the random forests) in the CMC1 model. When the feature set expanded to

include all STRING proteins, MT-CO1 remained a high contributor in the random forest but

not the elastic net model, suggesting the elastic nets may be more susceptible to collinear fea-

tures than the random forests.

Two other examples of small stable complexes with interdependent protein and mRNA cor-

relation are shown in Fig 5. Proteasome Assembly Chaperone 2 (PSMG2) forms the heterodi-

mer PAC1-PAC2 complex (2 protein members in CORUM) along with Proteasome Assembly

Chaperone 1 (PSMG1), which binds with 20S proteasome precursors and acts as a scaffold to

promote proteasome ring assembly while preventing aberrant dimerization of 20S proteasome

α rings [45]. PSMG2 and PSMG1 are co-expressed strongly at the protein level (r: 0.713) but

only moderately at the transcript level (0.222) (Fig 5A). PSMG2 protein has a higher correla-

tion with PSMG1 transcript (r: 0.472) than its own (r: 0.158). From GTEx v8 data, PSMG2 is

expressed more highly than PSMG1 across tissues (TPM ~40 vs. 15) [46], which suggests

PSMG1 may act as a limiting factor in heterodimer formation. PSMG1 knockout in mice has
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Fig 3. Proteins with improved predicted levels after inclusion of additional transcript features. Four proteins with substantial

predictability from transcriptome data upon the inclusion of additional features are shown: A. PCCB, B. CMC1, C. PSMG2, D. SMCR8.

For each protein, the transcript-trained prediction of protein level is plotted on the x axis and the actual protein level is plotted on the y

axis. The lack of variance in predicted protein levels from the self-transcript model is due to the regularization of the elastic net model,

and corresponds to a lack of correlation between PCCB mRNA and protein (see Fig 4). Blue: train set, brown: test set. Columns denote
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been shown to decrease PSMG2 at the protein level, consistent with our finding that PSMG1

transcript levels influence PSMG2 protein abundance [47].

In another example, Smith-Magenis Syndrome Chromosomal Region Candidate Gene 8

(SMCR8) forms the heterotrimer C9orf72-SMCR8-WDR41 complex (3 protein members in

CORUM) together with the C9orf72-SMCR8 Complex Subunit (C9orf72) and WD Repeat

Domain 41 (WDR41) [48]. C9orf72-SMCR8 is known to dimerize prior to binding with

WDR41 to form the heterotrimer. The C9orf72-SMCR8 complex modulates autophagy, likely

the transcript feature set used to train the model. The number of features used to train the model in each feature set is shown inside each

plot. r: Correlation coefficient.

https://doi.org/10.1371/journal.pcbi.1010702.g003

Fig 4. mRNA-Protein correlations of PCCB and CMC1 with functionally associated proteins. Two examples of proteins whose abundance is better

explained by another transcript are shown. A. PCCB protein level is predicted by PCCA transcript but not its own transcript. B. CMC1 protein level is

explained by MT-CO1 transcript level but not its own transcript. Substantial correlations across transcripts and proteins (� 0.4) are bolded.

https://doi.org/10.1371/journal.pcbi.1010702.g004
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by modulating the maturation of autophagosomes [49]. Mutations in the genes encoding the

C9orf72-SMCR8 Complex are broadly implicated in diseases including amyotrophic lateral

sclerosis and frontotemporal dementia. As in the other cases, we observed a co-expression of

SMCR8 and C9orf72 at the protein level (0.632) but not the transcript level (–0.012), and

SMCR8 protein levels correlate more strongly with the C9orf72 transcript (r: 0.436) than the

SMCR8 transcript (r:0.231) (Fig 5B). A previous study suggested C9orf72 may stabilize excess

SMCR8 [50], providing one possible explanation for the mechanism behind the observations

here.

S5 Fig shows two more examples concerning small complexes. The mitochondrial calcium

uniporter complex (MCU complex) contains five protein members in CORUM (S5A Fig).

Fig 5. mRNA-Protein correlations of PSMG2 and SMCR8 with functionally associated proteins. Two examples of proteins whose abundance is better

explained by another transcript are shown. A. PSMG2 protein level is predicted by PSMG1 transcript but not its own transcript. B. SMCR8 protein level is

explained by C9orf72 transcript level but not its own transcript. Substantial correlations across transcripts and proteins (� 0.4) are bolded.

https://doi.org/10.1371/journal.pcbi.1010702.g005
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Regulatory subunits of the complex, including calcium uptake protein 2, mitochondrial

(MICU2) sense calcium levels, regulating the uptake of calcium performed by the mitochon-

drial calcium uniporter (MCU) [51]. Heterologous overexpression of FLAG-tagged MCU has

been shown to increase expression of MICU2 in culture [52]. This is interesting, given the

observation here that at an endogenous level of MCU expression, MICU2 protein is more

strongly correlated to the MCU transcript (r: 0.488) than its own (r: 0.058) (S5A Fig).

The final example highlighted here comes from the heterodimer calcineurin, which is made

up of a catalytic subunit (calcineurin subunit A), with 3 isoforms encoded by 3 separate genes

(PPP3CA, PPP3CB and PPP3CC), and a Ca2+ binding regulatory subunit (calcineurin subunit

B), with 2 isoforms also encoded by 2 separate genes (PPP3R1 and PPP3R2) [53]. Calcineurin

is a serine/threonine phosphatase which modulates many calcium dependent signaling path-

ways, and is the target of immunosuppressant drugs cyclosporin A and FK506 [54]. In the

analysis here, calcineurin subunit B type 1 (PPP3R1) protein correlated poorly with PPP3R1

transcript levels (r: 0.205), but strongly correlates (r: 0.819) with the protein phosphatase 3 cat-

alytic subunit alpha (PPP3CA) transcript––an isoform of calcineurin subunit A (S5B Fig).

Together, these cases illustrate a general observation––in cases where the protein abundance

of a gene is more highly correlated to the transcript level of a binding partner than to its cog-

nate transcript, there appears to be stronger co-expression between the gene and its abundance

driver at the protein level but not at the transcript level.

To corroborate these observations, we used the Boruta algorithm against the random forest

CORUM models and confirmed each of the principal non-cognate transcript features is

retained. We further considered Shapley values as an explanation of random forest and gradi-

ent boosting models, and likewise found that the interacting protein transcripts formed the

top contributors in explaining the abundance of the protein of interest in each of the six cases

above (S6 Fig). In some examined cases including PSMG2, the transcript coding for the pro-

tein of action is more abundant than that of its regulating interacting partner, which is com-

patible with a scenario where simple stoichiometric constraints control the protein level of the

supernumerary subunit. It is however less clear whether this scenario applies to other exam-

ined cases including CMC1 and MT-CO1, where the MT-CO1 transcript is much more abun-

dant than CMC1 owing to the multiple copies of mitochondrial genome in the tissue. Hence,

how MT-CO1 regulates CMC1 protein level is not explainable directly from transcript stoichi-

ometry alone and awaits further mechanistic studies. Finally, we also examined feature impor-

tance in a single data set of a recent CPTAC study that showed the highest performance in the

single feature model (LSCC) (S7 Fig). Among the six highlighted proteins (PCCB, CMC1,

PSMG2, SMCR8, MICU2, PPP3R1), five were best predicted by a non-self transcript, and five

of the top trans locus predictors were conserved from the combined data set analysis with the

exception of MT-CO1, which was not among the model features due to the number of shared

observations required. Hence the observed trans locus predictors are conserved in a single

data set model and are unlikely to be due to heterogeneity across data sets.

Table 1 summarizes the top 50 genes whose protein abundance becomes substantially

more predictable upon the inclusion of CORUM features, along with their top protein level

contributor transcripts. Notably, a number of these genes are found in multiple gene sets

within the MSigDB C2 CGP gene set collection that are commonly used for functional enrich-

ment analysis [55], whereas others are found to be significantly associated with diseases in the

literature from bibliometric analysis [56,57], hence these genes are common and important to

multiple areas of biomedical inquiries. We suggest the possibility that the transcripts of these

genes may not present accurate proxy variables for their proteins should be considered in link-

ing transcript level changes to downstream cellular physiology.
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Table 1. Top 50 proteins whose abundance is under substantial influence from non-cognate transcripts. Columns 1 and 2: gene names. Columns 3 show the represen-

tative CORUM complex the gene of interest belongs to. Columns 4 and 5 denote the increase in prediction performance between elastic net single feature (self transcript)

vs. CORUM feature sets. Column 6 shows the number of transcripts used to predict the protein level of the gene of interest in the CORUM feature set. Column 7 shows the

top trans-locus contributor to the protein level of the gene of interest, ranked by absolute coefficients in the elastic net model. Proteins whose own transcripts are the top

predictors are marked with (self). Column 8 denotes the number of MSigDB C2 CGP (chemical and genetic perturbation) gene sets in which the gene appears. Column 9

denotes the top significantly associated Disease Ontology term with the gene of interest in the literature.

Gene Gene name Representative CORUM complex name Test set

r, single

feature

Test set r,

CORUM

features

# CORUM

feature

Top non-self

contributor

# MSigDB

CGP sets

Most significant

Disease Ontology

association

(P < 0.05)

APOL1 apolipoprotein L1 APOL1 complex B (APOL1, APOA1,

HPR, FN1, IGHM)

0.118 0.435 5 APOA1 20 Kidney disease

(P = 0.00011)

BORCS8 BLOC-1 related

complex subunit 8

BORC complex 0.189 0.456 8 BORCS7 5

CACNA1A calcium voltage-gated

channel subunit

alpha1 A

G protein complex (CACNA1A, GNB1,

GNG2)

0 0.305 3 GNG2 31 Familial hemiplegic

migrane

(P = 0.00032)

CAPZB capping actin protein

of muscle Z-line

subunit beta

CAPZA3-CAPZB complex 0.032 0.719 22 WASHC2A 19

CMC1 C-X9-C motif

containing 1

Cytochrome c oxidase, mitochondrial 0.274 0.615 13 MT-CO1 10 Osteoarthritis

(P = 0.002)

COL18A1 collagen type XVIII

alpha 1 chain

ITGA5-ITGB1-CAL4A3 complex 0.056 0.359 3 ITGA5 82

CPLX3 complexin 3 SNARE complex (VAMP2, SNAP25,

STX1a, STX3, CPLX1, CPLX3, CPLX4)

0.478 0.515 6 SNAP25 6 Asphyxia

neonatorum

(P = 0.013)

DAG1 dystroglycan 1 UTM-SGCE-DAG1-CAV1-NOS3

complex

0.251 0.604 6 CAV3 33 Muscle tissue

disease (P = 0.0023)

DLG4 discs large MAGUK

scaffold protein 4

DLG4-DLGAP1-SHANK3 complex 0 0.51 6 FYN 18 Schizophrenia 4

(P = 0.036)

EPN1 epsin 1 RalBP1-CCNB1-AP2A-NUMB-EPN1

complex

0.098 0.453 5 CCNB1 6

ESPL1 extra spindle pole

bodies like 1, separase

ESPL1-CDC2 complex -0.372 0.1 3 PTTG1 55 Spindle cell cancer

(P = 0.03)

F7 coagulation factor

VII

Factor-Xa-TFPI-factor-VIIa-tissue factor

complex

0 0.479 4 F10 27 Factor VII

deficiency

(P = 0.0014)

GNB1 G protein subunit

beta 1

G protein complex (BTK, GNG1, GNG2) 0.195 0.665 28 PTH1R 53

GP1BA glycoprotein Ib

platelet subunit alpha

ITGA2b-ITGB3-CD9-GP1b-CD47

complex

0.262 0.523 6 VWF 12 Blood platelet

disease (P = 0.0006)

GTF2F1 general transcription

factor IIF subunit 1

RNA polymerase II complex, (CDK8

complex)

0.18 0.644 44 GTF2F2 17

HSPA1A heat shock protein

family A (Hsp70)

member 1A

HSP70-BAG5-PARK2 complex 0.182 0.48 42 HSPA8 96 Ischemia

(P = 0.017)

HUS1B HUS1 checkpoint

clamp component B

9b-1b-1 complex 0 0.57 2 RAD1 0 Testicular Leydig

cell tumor

(P = 0.032)

IDH3B isocitrate

dehydrogenase (NAD

(+)) 3 non-catalytic

subunit beta

Isocitrate dehydrogenase [NAD],

mitochondrial

0.158 0.431 3 IDH3A 37

IRAK2 interleukin 1 receptor

associated kinase 2

IRAK1-IRAK2 complex 0.227 0.484 2 (Self) 33 Lymphocytic colitis

(P = 0.018)

(Continued)
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Table 1. (Continued)

Gene Gene name Representative CORUM complex name Test set

r, single

feature

Test set r,

CORUM

features

# CORUM

feature

Top non-self

contributor

# MSigDB

CGP sets

Most significant

Disease Ontology

association

(P < 0.05)

ITGA2B integrin subunit

alpha 2b

ITGA2b-ITGB3-CD9-GP1b-CD47

complex

0.204 0.48 12 TGM2 30 Blood platelet

disease

(P = 0.00038)

KCNQ2 potassium voltage-

gated channel

subfamily Q member

2

KCNQ2-KCNQ3 complex 0.007 0.331 2 KCNQ3 13 Epilepsy

(P = 0.0012)

LAMA5 laminin subunit

alpha 5

ITGA6-ITGB4-LAMA5 complex 0.192 0.466 6 ITGB4 47 Placental infarction

(P = 0.024)

LRP5 LDL receptor related

protein 5

Norrin receptor complex 0.121 0.442 3 FZD4 26

MPP3 MAGUK p55 scaffold

protein 3

CADM1-4.1B-MPP3 complex -0.069 0.685 14 ITGB2 20

MRPL53 mitochondrial

ribosomal protein

L53

39S ribosomal subunit, mitochondrial 0.21 0.654 78 MRPL12 4

NDUFAF1 NADH:ubiquinone

oxidoreductase

complex assembly

factor 1

Ecsit complex (ECSIT, MT-CO2,

GAPDH, TRAF6, NDUFAF1)

0.149 0.443 12 ECSIT 14 Protein deficiency

(P = 0.0038)

NEDD8 NEDD8 ubiquitin

like modifier

Ubiquitin E3 ligase (CDC34, NEDD8,

BTRC, CUL1, SKP1A, RBX1)

0.087 0.343 7 SKP1 22

NGDN neuroguidin AATF-NGDN-NOL10 complex 0.249 0.538 3 NOL10 9

NPHP4 nephrocystin 4 DVL2-INVS-NPHP4-RPGRIP1L

complex

0 0.36 8 NPHP1 8 Kidney disease

(P = 0.0011)

PATJ PATJ crumbs cell

polarity complex

component

CRB1-MPP5-INADL complex 0.27 0.562 11 (Self) 26

PCCB propionyl-CoA

carboxylase subunit

beta

Propionyl-CoA carboxylase -0.008 0.483 2 PCCA 30 Propionic acidemia

(P = 0.0048)

PHF21B PHD finger protein

21B

LSD1 complex 0 0.342 13 HMG20A 7 Colon squamous

cell carcinoma

(P = 0.03)

PHKG1 phosphorylase kinase

catalytic subunit

gamma 1

Phosphorylase kinase complex -0.629 -0.17 3 (Self) 8 Alzheimer’s disease

(P = 0.041)

PPP3R1 protein phosphatase

3 regulatory subunit

B, alpha

Calcineurin-FKBP12 complex 0.263 0.544 3 PPP3CA 21

PSMB5 proteasome 20S

subunit beta 5

26S proteasome 0.022 0.53 37 PSME2 43 Multiple myeloma

(P = 0.037)

PSMB6 proteasome 20S

subunit beta 6

26S proteasome 0 0.53 37 PSME2 31

PSMC3IP PSMC3 interacting

protein

TBPIP/HOP2-MND1 complex 0.294 0.551 2 MND1 42 Recurrent ovarian

germ cell neoplasm

(P = 0.017)

PSMG2 proteasome assembly

chaperone 2

PAC1-PAC2 complex 0.211 0.472 2 PSMG1 13 Herpes simplex

(P = 0.03)

REV1 REV1 DNA directed

polymerase

Rev1-Rev3-Rev7-Polkappa complex 0 0.5 4 REV3L 14 Brucellosis

(P = 0.0008)

(Continued)
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Taken together, these results exemplify widespread interdependency of protein levels on

trans locus transcripts, involving not only large megadalton protein complexes but many small

complexes involved in diverse biological processes in the cell. The CORUM feature set consid-

ered here alone contains over 2,700 human complexes derived from CORUM release 3.0 map-

pable to 3,689 proteins with distinct gene names, with a median of 3 proteins per complex (S8

Fig). Thus, small protein complexes are widespread in the proteome and a large fraction of the

proteome could be placed under complex post-transcriptional control that decouples protein

levels from mRNA levels. Moreover, half of the proteins in the CORUM annotations belong to

2 or more distinct complexes (including intermediates and subcomplexes) which suggest fur-

ther opportunities for more complex patterns of interdependent protein and mRNA levels.

Network representation of the interdependencies of protein level

regulations

We next examined whether the interdependency of proteins and trans locus transcripts may

be used to infer potential novel regulatory drivers. To do so, we constructed graphical models

to visualize the connections between each protein and the transcriptome features that contrib-

ute to its predicted level, followed by topological analysis to find hub nodes and extract net-

work patterns. To limit scope, we generated graphs to proteins whose prediction improved in

the CPTAC_8 data set following the inclusion of the CORUM or STRING features (Δr� 0.25)

A directed graph is then generated using a list of edges that connect feature variables

Table 1. (Continued)

Gene Gene name Representative CORUM complex name Test set

r, single

feature

Test set r,

CORUM

features

# CORUM

feature

Top non-self

contributor

# MSigDB

CGP sets

Most significant

Disease Ontology

association

(P < 0.05)

RPA3 replication protein

A3

RPA complex 0.211 0.537 20 RPA2 45 Combined

thymoma

(P = 0.048)

RPGRIP1L RPGRIP1 like DVL2-INVS-NPHP4-RPGRIP1L

complex

-0.051 0.289 4 INVS 6 N syndrome

(P = 0.0079)

RPS29 ribosomal protein

S29

Nop56p-associated pre-rRNA complex 0.06 0.455 120 TUBB1 17

SERPINA1 serpin family A

member 1

SERPINA1-CTSG complex

SERPINA1-ELA2 complex

0.201 0.467 3 CTSG 73 Lung disease

(P = 0.000008)

SERPIND1 serpin family D

member 1

MLL-HCF complex 0 0.581 7 MEN1 17 Cervical cancer

(P = 0.00094)

SMCR8 SMCR8-C9orf72

complex subunit

WDR41-(C9orf72-SMCR8)-

(FIP200-ULK1-ATG13-ATG101)

complex

0.256 0.571 7 C9orf72 9 Amyotrophic

lateral sclerosis

(P = 0.026)

TEN1 TEN1 subunit of CST

complex

CST complex 0 0.383 3 STN1 5 Coats disease

(P = 0.016)

TNIP2 TNFAIP3 interacting

protein 2

TNF-alpha/NF-kappa B signaling

complex

0.161 0.629 25 MAP3K8 17 Malignant

histiocytic disease

(P = 0.022)

TTR transthyretin TTR-RBP complex 0.084 0.414 2 RBP4 21 Amyloidosis

(P = 0.0000081)

UBA52 ubiquitin A-52

residue ribosomal

protein fusion

product 1

60S ribosomal subunit, cytoplasmic

Ribosome, cytoplasmic

0 0.537 79 RPS9 20 Iridocyclitis

(P = 0.026)

YBX3 Y-box binding

protein 3

H2AX complex II 0.141 0.424 5 NPM1 55 Lyme disease

(P = 0.0012)

https://doi.org/10.1371/journal.pcbi.1010702.t001
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(transcripts) to target variables (proteins), with the edge weights calculated using a function of

the elastic net coefficients and random forest feature importance of the models for both the

CORUM (S6 Table) and the STRING (S7 Table) feature sets. The resulting network is parti-

tioned into connected components of transcript-protein relationships. The subgraph that cor-

responds to the relationship between PCCA and PCCB as discussed above shows the PCCB

node contributing (as transcript) to its own protein level weakly, and the PCCA node contrib-

uting strongly to the PCCB node (as protein) (Fig 6A). The relationship of CMC1 with other

cytochrome c oxidase complex subunits, as described above, is represented in a wheel and

spokes pattern where multiple transcripts (orange nodes) contribute either positively or nega-

tively to the CMC1 protein level, with MT-CO1 having the strongest positive contributions

(Fig 6B). Another member of the MITRAC module COA3 to which CMC1 binds likewise

exerts a positive influence on the protein level of CMC1, consistent with the possibility that

interdependent protein and transcript relationships may reflect information related to protein

complex assembly sequences. Larger subgraphs represent instances where two or more protein

target nodes are connected by shared transcript source nodes. Due to the method by which the

graphs are generated, protein hubs (with high in-degrees) are more prevalent, but transcripts

with high outflow activities are also seen that connect two or more protein nodes. A subgraph

in Fig 6C predicts that the transcript levels of SH3KBP1 and CD2AP both contribute to the

predicted protein levels of multiple proteins involved in the RICH1/AMOT polarity complex

and the PI4K2A-WASH complex, and the protein level of WASHC1 is influenced by genes in

the CCC-Wash (WASH1, FAM21C) complex and the PI4K2A-WASH complex (Fig 6C).

We highlight an instance where mRNA-protein relationships may be examined to generate

new hypotheses. The mitochondrial ribosome is represented in a highly connected subgraph

where the abundances of a majority of complex subunit proteins are each contingent upon

multiple transcripts (Fig 6D). Using topological analysis based on the hierarchical community

detection framework (HiDeF) method [33], we showed that this subgraph preserves the

expected hierarchical relationship between the 28S small and 39S large subunits in forming the

55S mitochondrial ribosome, suggesting the preferential connections within the proteoge-

nomic graphs broadly recapitulate subcomplex assembly (Fig 6E). We then extracted the hub

nodes from the subgraph using the betweenness centrality algorithm, which revealed mito-

chondrial serine beta-lactamase-like protein (LACTB) to be an upstream gene that is highly

connected within the subgraph and exerts a regulatory effect on both small and large mito-

chondrial ribosome subunit components. Feature importance analysis further suggests the

LACTB transcript to have a negative impact on multiple ribosomal mitochondrial proteins

(Fig 6F). Of note, LACTB was previously identified as a new subunit (MRP-L56) of the mito-

chondrial ribosomal large subunit isolated from sucrose gradients [58]. Subsequent work how-

ever has established the LACTB protein as a filament-forming protein that is localized to the

intermembrane space instead away from the mitochondrial ribosomes [59] that possesses in

vitro protease activity [60] and that acts as a tumor suppressor by maintaining post-mitotic dif-

ferentiation states [60]. The physiological function and antiproliferative mechanism of LACTB

are incompletely understood, although induced LACTB expression in cancer cells was found

to affect mitochondrial phospholipid metabolism [60]. The analysis here therefore raises the

possibility that LACTB may also affect oxidative phosphorylation in differentiated cells by reg-

ulating mitochondrial ribosome biogenesis and protein synthesis, which may be validated

experimentally.

A similar hub node analysis from the largest subgraph from the STRING feature set

(S8Table) showed chromogranin A and B (CHGA and CHGB) as inward hubs (i.e., proteins

associated with many transcripts) associated with secreted peptides including CST3, SER-

PINC1, MFGE8, SERPIND1, and others (S9 Fig), which is consistent with the known roles of
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these acidic glycoproteins as the primary constituents of secretory granules that can regulate

their rate of their formation [61]. Taken together, the topological analysis shown here suggests

mRNA-protein networks may be useful for generating new hypothesis on regulatory drivers

from large proteogenomics data.

Fig 6. Directed graphs of protein and transcript interrelationships identify candidate regulatory genes. A-C. Examples of directed graphs constructed from

genome-wide relationships of transcript-predicted proteins, containing members of A. the propionyl-CoA carboxylase complex; B. the cytochrome c oxidase,

mitochondrial complex; C. the PI4K2A-WASH complex, the RICH1/AMOT polarity complex, and others. In each subgraph, orange nodes have outflow edges

only (i.e., they are contributing transcripts in the prediction models). Blue nodes are nodes that are connected to other nodes via at least one inflow edge (i.e.,

they represent proteins, and optionally also transcripts if they also have outward edges). Orange edges represent positive coefficients of the transcripts to the

target proteins in the elastic net models; gray edges represent negative coefficients. All edges are directed from transcript to protein, and the widths of the edges

are scaled by the weight. D. A highly connected subgraph of mitochondrial ribosome subunits containing 73 nodes and 834 edges. E. Persistent community

detection and network representation of preferential node connections, showing a hierarchical relationship between the 28S and 39S subcomplex with the

assembled 55S mitochondrial ribosome. F. Network representation of hub nodes defined as 15% of nodes ranked by betweenness centrality, which predicts a

potential role of LACTB as a critical hub that lies upstream of multiple large and small mitochondrial ribosomal protein subunits. Node colors represent the pie

chart diagram of the corresponding GO biological process described in the table. SHAP values of three proteins (MRPL20, MRPL19, MRPS34) are highlighted

showing top model contributors.

https://doi.org/10.1371/journal.pcbi.1010702.g006
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Discussion

Widespread contributions of trans locus transcripts to protein level

Recent work has applied various machine learning models to the computational task of pre-

dicting across-sample protein levels using transcriptomics data, but investigation into the bio-

logical factors that uncouple transcriptome and proteome data have remained limited, with

many studies noting only that predictability may differ across broad functional categories, e.g.,

essential genes or metabolic genes may be less predictable. Here we analyzed cases where pro-

teins are poorly predicted by their cognate mRNA, and showed that the transcript levels of

interacting partners had an outsized contribution to the abundance of proteins of interest.

Although the notion that protein-protein interaction can influence protein abundance post-

transcriptionally is not new, as it is known that supernumerary subunits of protein complexes

can be removed through protein degradation, details of genes that show especially poor

mRNA and protein abundance correlations and the identities of their protein regulators have

remained scarce. The current study provides new evidence from protein prediction models

that protein abundance by other transcripts is common in the proteome, nominating specific

interactions involving not only large megadalton sized multi-protein complexes as previously

observed, but also smaller stable complexes (e.g., propionyl-CoA carboxylase with two sub-

units PCCB and PCCA; calcineurin A and B) in the CORUM feature set and potentially more

transient interactions documented in the STRING feature set. The common presence of small

stable complexes in the proteome greatly expands the repertoire of proteins for which due con-

siderations should be given when directly interpreting transcript level data as representing

protein level information. Moreover, it has been suggested that promiscuous protein-protein

interactions without established biological function may be a common occurrence during the

co-evolution of functional protein-protein interactions [62]. The occurrence of such stable but

non-functional interacting pairs could further increase the scope of trans locus protein regula-

tion which would have implications on the predictability of protein levels from mRNA levels.

The imperfect correlation between protein and mRNA points to orthogonal information

that exists between transcript and protein regulations, which underpins the untapped potential

for further multi-omics integration to derive new insights [63]. The use of protein correlations

to find causal insights for post-transcriptional regulations has previously been explored in other

contexts, which looked for anti-correlation between E3 ubiquitin ligases with known proteins

or ubiquitination sites of interest, which may control their protein level by virtue of post-trans-

lational degradation [18,24]. Extending this intuition towards multi-omics correlations, we

used directed graphs generated from the model coefficients and feature importance of trans

locus transcripts to represent the interaction patterns between the transcripts and proteins of

interest. This in turn nominated a number of hub proteins whose abundance is contributed by

multiple transcripts and hub transcripts that regulate multiple proteins, and enabled commu-

nity detection analysis to find the relationships between biological processes in protein and

mRNA correlation networks. As more data continue to become available, we foresee that graph-

ical models will be useful for finding more trans locus regulations of protein levels, such as

those that represent known assembly sequential steps or post-transcriptional regulators. These

graphical models may be used to generate testable hypotheses or find utility in predicting exper-

imental outcome, barring confounders or reverse causality effects. For instance, in the case of

the actin related protein 2/3 complex, one might predict that within a certain concentration

range an overexpression of ACTR3 and ARPC4 will be more effective in modulating ARPC3

protein levels than augmenting the expression of ARPC3 itself, which is readily testable by

experimentation. More generally, the results here corroborate the importance of post-transcrip-

tional regulation including protein degradation and turnover in modulating protein levels.
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Limitations of the study

Significant differences in protein regulations likely occur in different cell and tissue types. The

predictive models here are trained using publicly available CPTAC data from 8 cancer types,

which contain transcriptome and proteome data from both tumor and normal adjacent tissue

samples. In prior work, we found general concordance between protein and mRNA correla-

tion in CPTAC samples vs. GTEx tissue proteomics data [15]. However, other studies that

compared protein and mRNA correlation in tumors and normal adjacent tissues have found

higher inter-sample correlation in tumor samples [21,22], which may be attributable to the

increased translation rates in cancer. Hence, additional discordant cases between proteins and

mRNA likely remain to be discovered that are omitted here. Sample difference may also

explain the observation from GTEx proteomics that secreted proteins are associated with pro-

tein and mRNA discordance [7] as one might intuitively assume but which is not apparent in

the analysis here. The cases used for training the model are not labeled by their cancer type or

their tumor vs. normal adjacent tissue designation, which would likely have availed overall pre-

dictive performance.

We performed the analysis using expression data from TCGA/CPTAC RNA sequencing

experiments through the cptac Python API, which retrieves the final data tables from the flag-

ship CPTAC papers of each individual cancer type [25]. Although each TCGA/CPTAC cancer

subtype project follows an overall consistent experimental design and data acquisition strategy,

minute differences exist in the processing pipelines used to analyze the RNA sequencing data

(e.g., STAR vs. Bowtie2) and gene expression measure (e.g., RPKM vs. FPKM) which could

bias gene expression values across cancer types. Likewise, there are subtle differences in the

protein expression data in each cancer type (e.g., search engine, isotope tags). As our goal here

is not to compare trends across cancer types, we have taken inspiration from the CPTAC

Dream Challenge submissions that improved overall predictions by borrowing information

across cancer types. However, it is also known that different data sets may present different

variability. Future work may employ uniformed processed data to improve performance and

reduce bias, such as data from the TCGA PanCanAtlas which processed all TCGA cancer

RNA sequencing data uniformly [64], or compare batch correction strategies. To our knowl-

edge, uniformly processed protein data are not yet available at the time of writing. Other

machine learning and deep learning algorithms can likely further boost protein level predic-

tions. We have limited our scope here to comparisons of different feature sets and previously

employed algorithms, and to result interpretation.

Finally, pitfalls must be considered when attempting to interpret predictive models in

search of mechanistic insights. Feature importance in the predictive models represents correla-

tion rather than causality, and hence interpretations can be confounded by independent con-

founders, multicollinearity, and reverse causality. In simple cases such as PCCB–PCCA, given

the emphasis on prior feature selections that prioritize known protein-protein interaction

partners, the logical interpretation would be to assume the hierarchical nature of gene regula-

tions where transcript levels are more likely to affect protein abundance than the opposite, but

this assumption becomes more tenuous as feature sets expand and the number of associations

increase, and in cases such as transcription factor proteins whose abundance can affect tran-

script levels across samples. Future work in this area may employ more sophisticated causal

inference methods to identify regulatory modalities.

Conclusion

In summary, this study compared predictive models of protein levels using different transcript

feature sets, and provided biological interpretations of the results by highlighting trans locus
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transcripts with substantial contributions to protein levels. The analysis here therefore reveals new

details into the gene identity and modality of trans regulation of protein levels, and gives support

to further development of prior transcript feature selection strategies to optimize protein predic-

tion tasks. The results show that the transcript levels of protein-protein interaction partners can

broadly influence protein abundance in a tissue, which has implications on the interpretations of

transcriptomics data and on understanding the architecture of proteome composition regulations.

With further refinement of feature selection and feature engineering methods and the availability

of large data sets, we foresee that similar approaches to those shown here will provide valuable

new insights into post-transcriptional mechanisms of protein regulations.
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tated feature set derived from CORUM v.3.0. Names of select complexes are labeled. The

majority of complexes are small with a median of 3 proteins per complex.
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and multi-protein complexes. The hierarchical network diagram shows Chromogranin A

and B (CHGA/CHGB) (magenta) and their first-degree inward flow neighbors (green) in the
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