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Abstract

Protein and mRNA levels correlate only moderately. The availability of proteogenomics data
sets with protein and transcript measurements from matching samples is providing new
opportunities to assess the degree to which protein levels in a system can be predicted from
mRNA information. Here we examined the contributions of input features in protein abun-
dance prediction models. Using large proteogenomics data from 8 cancer types within the
Clinical Proteomic Tumor Analysis Consortium (CPTAC) data set, we trained models to pre-
dict the abundance of over 13,000 proteins using matching transcriptome data from up to
958 tumor or normal adjacent tissue samples each, and compared predictive performances
across algorithms, data set sizes, and input features. Over one-third of proteins (4,648)
showed relatively poor predictability (elastic net r < 0.3) from their cognate transcripts.
Moreover, we found widespread occurrences where the abundance of a protein is consider-
ably less well explained by its own cognate transcript level than that of one or more trans
locus transcripts. The incorporation of additional trans-locus transcript abundance data as
input features increasingly improved the ability to predict sample protein abundance. Tran-
scripts that contribute to non-cognate protein abundance primarily involve those encoding
known or predicted interaction partners of the protein of interest, including not only large
multi-protein complexes as previously shown, but also small stable complexes in the prote-
ome with only one or few stable interacting partners. Network analysis further shows a com-
plex proteome-wide interdependency of protein abundance on the transcript levels of
multiple interacting partners. The predictive model analysis here therefore supports that pro-
tein-protein interaction including in small protein complexes exert post-transcriptional influ-
ence on proteome compositions more broadly than previously recognized. Moreover, the
results suggest mMRNA and protein co-expression analysis may have utility for finding gene
interactions and predicting expression changes in biological systems.
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Author summary

The abundance of mRNA is often measured as a surrogate variable of protein levels, but
how well the mRNA level of different genes correlate with their protein across samples
remains incompletely understood. Here we trained machine learning models over large
RNA sequencing and mass spectrometry data from up to 8 cancer types in the CPTAC
data sets to evaluate how well protein level variances across samples can be predicted from
their transcripts. Despite voluminous data, up to one-third of genes shows poor mRNA-
protein correlation suggesting their protein abundance is not primarily regulated from
cognate transcripts. The inclusion of mRNA level information from protein interaction
partners into the prediction models substantially improved prediction performance for a
subset of genes, suggesting their protein abundance may be primarily regulated post-tran-
scriptionally through protein-protein interactions. Notably, these proteins involve not
only subunits of large multi-protein complexes such as the ribosome as previously sus-
pected, but many proteins that form stable interactions with one or few other partners,
including the propionyl-CoA carboxylase, mitochondrial calcium uniporter, calcineurin,
and others. The results add to emerging evidence of independent regulation of protein
levels from their cognate transcripts and suggest avenues to improve the interpretation of
transcriptomics data.

Introduction

Mounting evidence now shows that protein levels correlate imperfectly with the levels of their
cognate transcripts [1-3]. More specifically, although a robust trend exists over the log scale
between protein and mRNA measurements across genes, genewise correlation between pro-
teins and their transcripts is much poorer across observations (samples, tissues, cell types, or
subjects). This has been taken to indicate that while abundant proteins have abundant tran-
scripts, transcript variance within a group of samples does not necessarily predict or signify
corresponding protein changes [4]. Multiple factors are known to contribute to this non-cor-
relation. Technical variations are often cited as a substantial source of non-correlation, as tran-
scriptomics and proteomics measurements carry different sources of error and proteins with
lower baseline variance in mass spectrometry have been shown to be better predicted by their
transcripts [5]. Nevertheless, a substantial portion of protein variance remains unexplained
and is likely attributable to biological and biophysical regulations. It has been well recognized
that large multi-protein complexes could invoke a buffer effect on protein levels [6,7], as a mul-
timeric complex only fully folds and functions when all subunits are present, any induction of
the transcript for a single subunit would not per se lead to additional complexes, and resulting
supernumerary proteins are thought to be quickly degraded [6,8]. Lastly, numerous post-tran-
scriptional and post-translational mechanisms are known to modulate protein levels such as
the gene- and context-dependent translation rates of mRNAs [9,10], the differential half-life
and temporal distributions between mRNAs and proteins [2,11], and proteolytic degrading of
translated proteins in the cell.

The emergence of large-scale proteogenomics data from matching samples has created
new opportunities to revisit protein-level predictions from transcriptomics data. The abun-
dance of a protein may be the function of one or more transcripts. Most notably, available data
sets from the Gene Tissue Expression (GTEx) project [7] and the Clinical Proteomic Tumor
Analysis Consortium (CPTAC) [12], have spurred the use of machine learning approaches to
evaluate how well one can predict protein level variance given a set of transcriptomics data,

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010702 November 10, 2022

2/27


https://doi.org/10.1371/journal.pcbi.1010702
https://nih.gov
https://nih.gov
http://cfret.org

PLOS COMPUTATIONAL BIOLOGY Widespread post-transcriptional regulation of protein abundance

with the goal of developing strategies and algorithms that can boost the performance of protein
level predictions. This culminated in a community based effort in the CPTAC Proteogenomics
Dream Challenge Task 2, which tasked participants with predicting protein abundances from
mRNA and genetic data from CPTAC ovarian and breast cancer samples [12]. The results sug-
gest that protein level prediction remains a challenging and not fully resolved problem, as
many community-submitted models did not improve substantially the baseline model, which
is an elastic net taking into account all mRNA features available and has a median Pearson’s
correlation coefficient (r) of 0.47 for ovarian cancer. Nevertheless, general lessons have
emerged from the top performing models; for instance: (i) ensemble methods generally per-
formed well [12-14]; (ii) combining observations from the ovarian and breast cancer datasets
to borrow information from each other led to improved predictions [12]; and (iii) judicious
feature pre-selection based on prior biological knowledge such as protein-protein interactions
improved prediction performance [12,14]. Notwithstanding these general observations, the
current literature reflects that much remains to be learned about the relationship of mRNA
and protein regulations in different genes and whether there are fundamental limits to how
well mRNA abundance reflects that of their protein counterpart. This problem has several
practical importances. Proteins carry out the majority of biological processes and hence are
arguably the most relevant molecules to biological states. Despite rapid advances in proteomics
techniques, bulk and single-cell RNA sequencing remain the most commonly used methods to
interrogate gene expression status on a large scale and will likely remain so in the foreseeable
future. Transcriptomics experiments often operate on the implicit assumption that identified
differential regulation exert their biological effects via their cognate proteins, hence it is impor-
tant to better understand the relationships between protein and mRNA levels to aid in data
interpretation and determining potential protein level changes given a set of transcriptomics
data. Alternatively, knowing the genewise difference in how well a gene’s transcript can predict
its protein counterpart may be useful for filtering and prioritizing biologically relevant tran-
script signatures [15].

Here we revisit the predictability of protein levels from transcriptomics data. Since the
time of the Dream Challenge, considerably more proteogenomics data have been made pub-
licly available which increases the number of observations available for modeling training, as
well as the number of proteins for which there is mass spectrometry information available.
Individual CPTAC cancer studies have analyzed the protein and mRNA correlation in indi-
vidual tumors and normal adjacent tissues and nominated specific pathways whose correla-
tions are particularly poor. Additional re-analysis and meta-analysis studies have outlined
the distribution of prediction performances across algorithms, and generally conclude there
is some statistical enrichment of biological processes or protein features among proteins that
are poorly predicted by their own transcript level, e.g., metabolic and essential proteins or
proteins belonging to complexes [12,16]. Nevertheless, a granular analysis remains unreal-
ized in the literature that interrogates the identity and regulatory modality of individual pro-
teins in depth. Accordingly, our goals here are to (1) evaluate how the increasing data size
from combining CPTAC tumor data sets affects the performance of prediction algorithms
and feature selection strategies; and (2) interpret prediction models to assess the importance
of transcript features in individual protein abundance regulation. The results suggest that
the incorporation of transcript level information from protein interacting partners played a
substantial role in predicting protein levels, and moreover, there are widespread instances in
the proteome where the abundance of a protein correlates primarily with a trans locus tran-
script than its own cognate transcript, which has implications for gene expression profiling
studies.

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010702 November 10, 2022 3/27


https://doi.org/10.1371/journal.pcbi.1010702

PLOS COMPUTATIONAL BIOLOGY Widespread post-transcriptional regulation of protein abundance

Methods
Data retrieval and processing

Gene expression data were obtained from public data from the CPTAC project and included
data from 8 cancer types: ovarian cancer (OV) [17], breast cancer (BR) [18], endometrial carci-
noma (EN) [19], colorectal cancer (CO) [20], lung adenocarcinoma (LUAD) [21], clear cell
renal carcinoma (CCRCC) [22], glioblastoma (GB) [23], and lung squamous cell carcinoma
(LSCC) [24]. The cumulative inclusions of each cancer type in the order above are sequentially
referred to as CPTAC_2 to CPTAC_8 in the manuscript, such that CPTAC_2 refers to the
union of ovarian and breast cancer (OV + BR); CPTAC_3 refers the union of ovarian, breast,
and endometrial cancer (OV + BR + EN); and so on. The mRNA and protein level expression
data from the CPTAC cancer types was retrieved using the cptac package v.0.9.7 [25] in Python
3.9. Each column of the quantitative measurement of the transcriptomics data acted as an
independent variable or feature variable whereas the normalized quantitative measurement of
a particular protein of interest acted as the single dependent or target variable in the protein
model. Retrieved mRNA level gene expression data are standardized using the scikit-learn
simple scaler. The proteomics data were likewise downloaded using the cptac package as pre-
sented in the data, and were stable isotope labeled relative quantitative mass spectrometry data
presented as normalized log ratios across samples as in the original studies. All tumor samples
were labeled using Thermo tandem mass tag (TMT) 10- or 11- plex isobaric tags for MS2
quantification, with the exception of the ovarian cancer data, which were labeled with Sciex
iTRAQ isobaric tags for MS2 quantification, and the colon cancer data, which contained both
label-free and TMT quantifications. The retrieved log ratios across samples were not further
transformed.

For each protein for which predictions are to be made, we retrieved five separate feature
sets:

1. Single: Using only the single transcript coding for the protein of interest for model training,
then running the pipeline to train a model for each protein separately.

2. CORUM: Using the transcripts of all proteins belonging to the same protein complex as the
protein of interest, if any, in CORUM v.3.0 [26], where protein complexes are defined as
two or more proteins that interact physically in a quaternary structure. These transcripts
then act as independent variables (features) to predict the target variable (protein of inter-
est). The pipeline is then run to train a model for each protein separately.

3. STRING 800: Using the transcripts of interacting partners of the protein of interest as
input features. Interacting partners are retrieved from STRING v.11 [27], which documents
functional associations including physical interactions, genetic interactions, co-expression,
co-occurrence, and other associations. The STRING combined score represents the overall
likelihood of interactions. Interacting pairs with a STRING combined score of 800 or above
(high-confidence) are included. The pipeline is then run to train a model for each protein
separately.

4. STRING 200: As above, except that interacting pairs with a STRING combined score of
200 or above (low- to high-confidence) are included. The pipeline is then run to train a
model for each protein separately.

5. Transcriptome: A transcriptome-wide model where all qualifying transcripts in the data
set are included as features, prior to the removal of low-variance features. The pipeline is
then run to train a model for each protein separately.
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Model training and evaluation

For each feature set, missing values for feature variables are imputed using median imputation,
followed by the removal of features with variance of 0.2 or below. Models are not trained for
proteins with fewer than 50 empirical observations. The data are then split 80:20 into training
and test sets. No imputation or additional standardization was performed on the proteomics
data. The input and target data from the training set are then used to train a model using either
linear regression, elastic net with 5-fold cross validation, random forest regressor, or gradient
boosting regressor in scikit-learn v.1.0 [28], with the following specified parameters: random
forest number of estimators: 500, criterion: squared error, max depth: 4; elastic net cross vali-
dation L1 ratio: 0.1, 0.5, 0.9, 0.95, cv: 5, tolerance: le-3, max iterations: 2000; gradient boost-
ing: n_estimators: 1000, max_depth: 3, subsample: 0.5, min_samples_splot: 5, learning_rate:
0.025. The trained models are saved as individual objects which include the predicted protein
levels in the training set as well as the contribution of each feature to the overall prediction
(coefficients in linear regression and elastic net; feature importance and trees in random forest
and gradient boosting regressors), and are applied to predict protein levels in the test set data.
Further interpretation of feature importance was performed using Shapley values with the aid
of the shap package v.0.40.0 [29], or with the Boruta algorithm using the Boruta_Py package
v.0.3 [30].

To evaluate model performance, the Pearson’s correlation coefficients between predicted
(9) and actual (y) protein values are calculated individually for the train and test set data for
each protein model using the numpy corrcoef function, or defaulted to 0 if the standard devia-
tion of predicted values is 0. Goodness-of-fit (R?) is calculated using scikit-learn.metrics.
r2_score function. Normalized root mean square errors (NRMSE) are calculated as follows:

1
— min(y))

1 n—1 y
NRMSE = |- —
n ; (yi yi) * (max(y)

Network construction and analysis

To construct the protein regulation network, we first constructed an overall graph from a sub-
set of transcript-protein relationships using the networkx package [31] in Python 3.9. Qualify-
ing proteins are those whose prediction increased with the inclusion of more features, such
that in the STRING or CORUM feature set, the correlation coefficient between the elastic net
predicted and actual protein levels is greater than the single feature elastic nets by at least 0.25.
Transcripts that contribute to the prediction of these proteins are therefore included if their
elastic net coefficient a and random forest feature importance b are greater than a certain
threshold, which was set to a = 0.05, b = 0.05 for the CORUM feature set and a = 0.2, b = 0.05
for the STRING feature set.

In the data, the list of proteins and their corresponding transcriptomics features act as the
nodes and the interaction pattern is a function of the correlation value and feature importance
between a protein and the transcriptomics. The direction of the edge therefore flows from
transcriptomics to protein. All the text files for each protein obtained from the computational
pipeline are compiled into a n overall data frame. This data frame is then converted into the
form of a network data frame. In this data frame, all the protein becomes the target node, and
the transcriptomics corresponding to the protein becomes the source node. Additional column
of this data frame consists of the weight between a protein and its predicting transcripts, which
was calculated using the sum of the [-1,1] clipped elastic net coefficient and the descending
percentile rank of the random forest feature importance. An overall directed graph G(V, E) is
then constructed from the edge lists with proteins as targets and their predicting transcripts as
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sources, such that it is a function of vertices V which depict protein and/or transcript nodes
and edges E which flow in the direction from the transcript sources to the protein targets.
Using the built-in functions in networkx, this overall directed graph is divided into weakly
connected components, which resulted in individual subgraphs such that for the overall net-
work G = (V, E) where V is the vertices and E is the edge then a subgraph of G= (V,E) isa
graph S = (V/, E') where vertex set V/ C V and edge set E' C E connects only nodes of V'. We
then used Cytoscape v.3.9 [32] to visualize and perform additional topology analysis and func-
tional annotations of each subgraph. HiDef persistent community detection [33] was per-
formed with the aid of the CyCommunityDetection Cytoscape plugin [34] using the Leiden
algorithm [35]. Functional enrichment of individual communities was performed using
CyCommunityDetection with the g:Profiler web server [36]. Hub nodes were identified with
the aid of the CytoNCA [37] Cytoscape plugin using the betweenness centrality algorithm with
the top 10% of proteins with the highest centrality defined as hubs. Functional enrichment
analysis on the hub proteins was performed with the aid of the stringApp [38] Cytoscape
plugin using default settings and 5% false discovery rate cutoff.

Additional data analysis

Additional data analysis, statistics, and visualization were performed in R v.4.1.1 with the aid
of the ReactomePA [39], clusterProfiler [40], and circlize [41] packages; and in Python 3.9
with the aid of the seaborn [42] package.

Results

Feature selection improves the prediction of protein abundance from
transcriptome data

We first evaluated whether increasing proteogenomics data depth would impact optimal fea-
ture selection strategies and algorithms in prediction protein levels. To do so, we retrieved
data from up to 8 tumor types from the CPTAC data set and processed the data to collage a
data table with matching protein and transcript data from each tumor sample. The data sets
were ordered such that breast and ovarian cancers as in the DREAM challenge were combined
first, then other cancer types were added according to the order of their availability (see Meth-
ods). We trained models to predict the target variable (the normalized labeled mass spectrome-
try measured abundance of a particular protein) from various input features (transcriptomics
data from the matching samples) using either a multiple linear regression, elastic net, and ran-
dom forest regressor in scikit-learn. To compare the performance of prior knowledge based
feature selection, we further compared supplying the models with input features based on (1)
only RNA level data the corresponding transcript of the target variable protein (single feature)
(2) self transcript plus the transcript of any protein within the same protein complex of the tar-
get variable protein in CORUM (CORUM feature); (3) self transcript plus the transcript of any
proteins that are high-confidence protein interaction partners including physical interactions
and other inferred association from STRINGdb (STRING 800 feature); (4) self transcript plus
the transcript of any proteins that are low to high- confidence protein interaction partners
from STRINGdDb; (5) using all qualifying transcripts (transcriptome features).

We next compared the genewise prediction performance of the transcriptome using the
test set correlation coefficient between predicted and actual mass spectrometry protein values,
R?, and NRMSE as described (Fig 1A and S1 Table). The elastic nets and random forest mod-
els performed better with more features and more data. In contrast, a multiple linear regres-
sion model performed little better with more included features and in fact failed to predict
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Fig 1. Genewise dispersion of protein predictability from transcriptome data. Box plots of test set correlation coefficients between the transcript-predicted
and actual protein level for each protein are shown across five feature sets (column: single/self transcript, CORUM interactors, STRING 800 high-confidence
associated proteins; STRING 200 low-confidence associated proteins, and all transcripts) and three algorithms (multiple linear regression, elastic net, and
random forest). In each plot, the x axis denotes the number of additive CPTAC data sets used to train the models as described in Methods; box: interquartile
range; whiskers: +/- 1.5 IQR; notch: SEM.

https://doi.org/10.1371/journal.pchi.1010702.9001

protein levels when a large number of features are given. For the elastic net and random forest
models, performance gains began to saturate with additional data sets (r: 0.388 and 0.402,
respectively) but further increased when larger feature sets were given (r: 0.599 for both) (Figs
1A and S1). As a comparison, we also evaluated the performance of the models in single cancer
data (i.e., in each data set alone) (S2A Fig) as well as combined the data sets in the order of
descending performance (S2B Fig). The single cancer models suggest that a prediction perfor-
mance of up to median r of 0.691 is achievable using the Transcriptome wide feature set, and
0.69 in the STRING 200 feature set (random forest, CCRCC), albeit in a single cancer type
only. In both the single cancer type and reordered combination comparisons, the observation
remains true in all cases that the inclusion of protein interactor features further increased the
prediction performance of both the elastic net and random forest algorithms. Hence, substan-
tial prediction improvements resulted from the inclusion of other transcripts (number of fea-
tures) over the gain in data set sizes (number of observations) or the use of algorithms
(random forests) that can account for non-linearity. This is corroborated when considering
the feature sets across the largest data set collection used (CPTAC_8 from 8 cancer types).
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Model performance continued to increase as more features were added in (median r from
0.398 to 0.599), and the number of non-predictors and negative predictors decreased while
overall dispersion of predictability also decreased.

From the baseline self-transcript model in the CPTAC_8 data set containing 8 cancer types,
we found that strong protein predictors (r > 0.6; 2,008 genes) are enriched in genes participat-
ing in membrane proteins and cell junctions (Fig 2A and S2 Table), whereas poor protein pre-
dictors (r < 0.3; 4,648 genes) are enriched in multiple large multi-protein complexes (Fig 2B
and S3 Table). Hence the analysis of CPTAC_8 data set confirms prior observations that pro-
tein complex membership presents a major source for transcript-protein non-correlation.

We next compared the genewise performances between the STRING feature elastic net
model and the self transcript model to investigate the observed performance gain at a more
granular level. Considering the 13,239 genes with protein-level prediction and with at least one
STRING interactor, on average, each gene in the STRING model has a median of 273 [158-
457] features, compared to 1 feature in the self transcript model. Incorporation of STRING fea-
tures led to an average increase in test set correlation coefficients of 0.16 [IQR: 0.07-0.27] (S4
Table). There is a significant positive correlation between the number of features and predic-
tion improvements (Pearson’s r 0.21, P: 8.2e-131) (S3A Fig), a relationship which persisted
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when only genes with 10 or more interactors were included S3B Fig). A similar observation is
seen in the CORUM feature set where the number of transcript features (i.e., CORUM com-
plex interactors) of a particular protein is positively correlated with improvement in predict-
ability of protein abundance (S3C and S3D Fig). A functional enrichment analysis of proteins
with strong improvements in prediction (difference in STRING vs. self-feature in test set pre-
dicted-actual correlation coefficient (Ar) > 0.25) showed a strong enrichment in large multi-
protein complexes including the ribosome, mitochondrial ribosome, RNA polymerase, and
spliceosome (S5 Table) similar to the results from poor predictors. This corroborates that the
non-correlation between transcripts and proteins of multi-protein complexes levels can be
partially rescued by considering the information of interacting partner transcripts, which
could participate in post-transcriptional regulations such as by being the stoichiometrically
limiting transcript or crucial assembly parts, such that the transcript level of one subunit can
regulate the protein level of other subunits.

Opverall, these results are consistent with information about protein level residing both in
the transcripts of the genes encoding the protein as well as the protein association partners.
Moreover, taking into consideration the number of features in the STRING 800 and STRING
200 sets (median feature sizes of 10 [IQR: 2-48] and 266 [IQR: 149-451], respectively) com-
pared to the size of the whole transcriptome feature set, the results indicate that a substantial
portion of performance gains over the single-transcript feature set is already achievable from
relatively few selected prior features.

Proteins whose abundances are predicted by non-cognate transcripts are
common

We next examined more closely the underlying causes behind the performance gains of pro-
tein predictions in the CORUM and STRING feature sets. To do so, we examined the genes
whose protein prediction performance from transcripts increased substantially (Ar > 0.25)
after the incorporation of additional transcript features. In total, we observed 484 such pro-
teins in the CORUM feature sets, and 3,272 proteins from the STRING data set, representing
over 24% of all examined proteins. These numbers increase further when a less conservative
Ar threshold of > 0.15 is used (6,123 proteins in the STRING dataset, 946 in CORUM), alto-
gether suggesting non-cognate transcript contributions to protein level are common at the
proteome level. Upon inspecting the model feature coefficients (elastic nets) and feature
importance (random forests), we observed that a considerable portion of these proteins with
improved prediction are associated with (1) poor contribution from the self-transcript, and (2)
a substantial contribution from primarily a few non-cognate (i.e., trans locus) transcripts cod-
ing for other proteins (see below). In other words, although model performance continued to
increase with increased feature set sizes, the contributions of trans locus transcript features to
overall prediction performance is unevenly distributed, and are therefore attributable to a few
high contribution genes rather than a simple scaling with feature size. Notably, despite the
STRING feature set being substantially larger than the CORUM feature set, substantial contri-
butions from trans locus transcripts in the STRING feature set primarily involve transcripts
encoding proteins that form part of the ssame CORUM complex as the protein of interest itself,
suggesting that stable complex memberships play an outsized role in determining protein
levels.

To illustrate the poor predictive power of cognate transcripts on some proteins, we next
interrogated a subset of proteins where a non-self transcript has an outsized effect on the pro-
tein level of the proteins in the CORUM and STRING feature sets: Propionyl-CoA Carboxyl-
ase Subunit Beta (PCCB), C-X9-C Motif Containing 1 (CMC1), Proteasome Assembly
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Chaperone 2 (PSMG2), SMCR8-C9orf72 Complex Subunit (SMCR8), Mitochondrial Calcium
Uptake 2 (MICU2), and Protein Phosphatase 3 Regulatory Subunit B, Alpha (PPP3R1). PCCB
forms the propionyl-CoA carboxylase complex with two protein members, which breaks
down certain amino acids in the cell (Fig 3A). PCCB showed poor prediction by their own
self-transcripts (r:-0.008) but experienced high gains in test set correlation upon incorporating
additional transcript features in the CORUM (r: 0.483) and STRING (r: 0.692) models. CMC1
is an assembly factor that forms an early intermediate of the cytochrome ¢ oxidase complex in
the mitochondrion with 14 documented protein members in CORUM (Fig 3B). Likewise,
CMC1 showed only moderate prediction by their own self-transcripts (r: 0.274, respectively)
but experienced high gains in test set correlation upon incorporating additional transcript fea-
tures in the CORUM (r: 0.615) and STRING (r: 0.564) models.

We then considered the transcriptomics and proteomics data distributions of the features
that had highest coefficients in the elastic net model from the CORUM feature set for PCCB
and CMCI. For PCCB, most protein-level predictions are recovered when the feature set
includes PCCA, which together with PCCB forms the stable propionyl-CoA carboxylase
enzyme that consists of six copies of PCCB and six copies of PCCA each. There is a remarkably
strong correlation with its propionyl-CoA carboxylase complex interacting partner PCCA at
the protein level (r: 0.957), but this correlation is almost entirely absent at the transcript level
(r: =0.059). This is partially explainable by the observation that PCCA transcript has a higher
level of variability and is also strongly correlated with the PCCB protein level. The total protein
level of PCCB is therefore primarily driven by PCCA rather than PCCB transcripts (Fig 4A).

In the case of CMCI1, we found that MT-CO1 has the highest contribution to CMC1 protein
level (Fig 4B). MT-CO1 is the mitochondrial genome encoded subunit of complex IV that is
thought to act as the nascent scaffold around which the complex is assembled. CMC1 binds to
MT-COL1 during the formation of the early module known as MITRAC and is subsequently
released during assembly [43,44]. CMCI1 transcript and protein levels are moderately corre-
lated with one another (r: 0.228). Again, CMC1 and MT-CO1 show poor co-expression at the
transcript (r: -0.017) level and an improved correlation at the protein (r: 0.339) level, whereas
MT-COL1 transcript is robustly correlated with the CMC1 protein level (r: 0.583), which sug-
gests the possibility that proteogenomic co-expression may reveal additional functionally
related protein pairs. Closer inspection suggests the possibility of a non-linear relationship
between MT-CO1 transcript and CMCI protein where upon reaching a plateau, further
increases in MT-CO1 transcript does not correlate to further increase in CMC1 protein levels,
suggesting other transcripts may also contribute to CMC1 protein levels. Consistent with this,
other complex IV subunits also have non-negligible coefficients (in the elastic nets) or feature
importance (in the random forests) in the CMC1 model. When the feature set expanded to
include all STRING proteins, MT-CO1 remained a high contributor in the random forest but
not the elastic net model, suggesting the elastic nets may be more susceptible to collinear fea-
tures than the random forests.

Two other examples of small stable complexes with interdependent protein and mRNA cor-
relation are shown in Fig 5. Proteasome Assembly Chaperone 2 (PSMG2) forms the heterodi-
mer PAC1-PAC2 complex (2 protein members in CORUM) along with Proteasome Assembly
Chaperone 1 (PSMG1), which binds with 20S proteasome precursors and acts as a scaffold to
promote proteasome ring assembly while preventing aberrant dimerization of 20S proteasome
o rings [45]. PSMG2 and PSMG1 are co-expressed strongly at the protein level (r: 0.713) but
only moderately at the transcript level (0.222) (Fig 5A). PSMG2 protein has a higher correla-
tion with PSMGI transcript (r: 0.472) than its own (r: 0.158). From GTEx v8 data, PSMG2 is
expressed more highly than PSMG1 across tissues (TPM ~40 vs. 15) [46], which suggests
PSMGI1 may act as a limiting factor in heterodimer formation. PSMG1 knockout in mice has
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Fig 3. Proteins with improved predicted levels after inclusion of additional transcript features. Four proteins with substantial

predictability from transcriptome data upon the inclusion of additional features are shown: A. PCCB, B. CMC1, C. PSMG2, D. SMCRS8.
For each protein, the transcript-trained prediction of protein level is plotted on the x axis and the actual protein level is plotted on the y
axis. The lack of variance in predicted protein levels from the self-transcript model is due to the regularization of the elastic net model,
and corresponds to a lack of correlation between PCCB mRNA and protein (see Fig 4). Blue: train set, brown: test set. Columns denote
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the transcript feature set used to train the model. The number of features used to train the model in each feature set is shown inside each
plot. r: Correlation coefficient.

https://doi.org/10.1371/journal.pcbi.1010702.9003

been shown to decrease PSMG2 at the protein level, consistent with our finding that PSMG1
transcript levels influence PSMG2 protein abundance [47].

In another example, Smith-Magenis Syndrome Chromosomal Region Candidate Gene 8
(SMCR8) forms the heterotrimer C9orf72-SMCR8-WDR41 complex (3 protein members in
CORUM) together with the C9orf72-SMCR8 Complex Subunit (C9orf72) and WD Repeat
Domain 41 (WDR41) [48]. C90rf72-SMCRS is known to dimerize prior to binding with
WDRA41 to form the heterotrimer. The C90rf72-SMCR8 complex modulates autophagy, likely
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https://doi.org/10.1371/journal.pcbi.1010702.g004
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by modulating the maturation of autophagosomes [49]. Mutations in the genes encoding the
C90rf72-SMCR8 Complex are broadly implicated in diseases including amyotrophic lateral
sclerosis and frontotemporal dementia. As in the other cases, we observed a co-expression of
SMCR8 and C9orf72 at the protein level (0.632) but not the transcript level (-0.012), and
SMCRS protein levels correlate more strongly with the C9orf72 transcript (r: 0.436) than the
SMCRS transcript (r:0.231) (Fig 5B). A previous study suggested C9orf72 may stabilize excess
SMCR8 [50], providing one possible explanation for the mechanism behind the observations
here.

S5 Fig shows two more examples concerning small complexes. The mitochondrial calcium
uniporter complex (MCU complex) contains five protein members in CORUM (S5A Fig).
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Regulatory subunits of the complex, including calcium uptake protein 2, mitochondrial
(MICU?2) sense calcium levels, regulating the uptake of calcium performed by the mitochon-
drial calcium uniporter (MCU) [51]. Heterologous overexpression of FLAG-tagged MCU has
been shown to increase expression of MICU2 in culture [52]. This is interesting, given the
observation here that at an endogenous level of MCU expression, MICU?2 protein is more
strongly correlated to the MCU transcript (r: 0.488) than its own (r: 0.058) (S5A Fig).

The final example highlighted here comes from the heterodimer calcineurin, which is made
up of a catalytic subunit (calcineurin subunit A), with 3 isoforms encoded by 3 separate genes
(PPP3CA, PPP3CB and PPP3CC), and a Ca®* binding regulatory subunit (calcineurin subunit
B), with 2 isoforms also encoded by 2 separate genes (PPP3R1 and PPP3R2) [53]. Calcineurin
is a serine/threonine phosphatase which modulates many calcium dependent signaling path-
ways, and is the target of immunosuppressant drugs cyclosporin A and FK506 [54]. In the
analysis here, calcineurin subunit B type 1 (PPP3R1) protein correlated poorly with PPP3R1
transcript levels (r: 0.205), but strongly correlates (r: 0.819) with the protein phosphatase 3 cat-
alytic subunit alpha (PPP3CA) transcript-—an isoform of calcineurin subunit A (S5B Fig).
Together, these cases illustrate a general observation—-in cases where the protein abundance
of a gene is more highly correlated to the transcript level of a binding partner than to its cog-
nate transcript, there appears to be stronger co-expression between the gene and its abundance
driver at the protein level but not at the transcript level.

To corroborate these observations, we used the Boruta algorithm against the random forest
CORUM models and confirmed each of the principal non-cognate transcript features is
retained. We further considered Shapley values as an explanation of random forest and gradi-
ent boosting models, and likewise found that the interacting protein transcripts formed the
top contributors in explaining the abundance of the protein of interest in each of the six cases
above (S6 Fig). In some examined cases including PSMG2, the transcript coding for the pro-
tein of action is more abundant than that of its regulating interacting partner, which is com-
patible with a scenario where simple stoichiometric constraints control the protein level of the
supernumerary subunit. It is however less clear whether this scenario applies to other exam-
ined cases including CMC1 and MT-CO1, where the MT-CO1 transcript is much more abun-
dant than CMCI1 owing to the multiple copies of mitochondrial genome in the tissue. Hence,
how MT-CO1 regulates CMC1 protein level is not explainable directly from transcript stoichi-
ometry alone and awaits further mechanistic studies. Finally, we also examined feature impor-
tance in a single data set of a recent CPTAC study that showed the highest performance in the
single feature model (LSCC) (S7 Fig). Among the six highlighted proteins (PCCB, CMCl,
PSMG2, SMCR8, MICU2, PPP3R1), five were best predicted by a non-self transcript, and five
of the top trans locus predictors were conserved from the combined data set analysis with the
exception of MT-CO1, which was not among the model features due to the number of shared
observations required. Hence the observed trans locus predictors are conserved in a single
data set model and are unlikely to be due to heterogeneity across data sets.

Table 1 summarizes the top 50 genes whose protein abundance becomes substantially
more predictable upon the inclusion of CORUM features, along with their top protein level
contributor transcripts. Notably, a number of these genes are found in multiple gene sets
within the MSigDB C2 CGP gene set collection that are commonly used for functional enrich-
ment analysis [55], whereas others are found to be significantly associated with diseases in the
literature from bibliometric analysis [56,57], hence these genes are common and important to
multiple areas of biomedical inquiries. We suggest the possibility that the transcripts of these
genes may not present accurate proxy variables for their proteins should be considered in link-
ing transcript level changes to downstream cellular physiology.
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Table 1. Top 50 proteins whose abundance is under substantial influence from non-cognate transcripts. Columns 1 and 2: gene names. Columns 3 show the represen-
tative CORUM complex the gene of interest belongs to. Columns 4 and 5 denote the increase in prediction performance between elastic net single feature (self transcript)
vs. CORUM feature sets. Column 6 shows the number of transcripts used to predict the protein level of the gene of interest in the CORUM feature set. Column 7 shows the
top trans-locus contributor to the protein level of the gene of interest, ranked by absolute coefficients in the elastic net model. Proteins whose own transcripts are the top
predictors are marked with (self). Column 8 denotes the number of MSigDB C2 CGP (chemical and genetic perturbation) gene sets in which the gene appears. Column 9
denotes the top significantly associated Disease Ontology term with the gene of interest in the literature.

Gene Gene name Representative CORUM complex name | Testset |Testsetr, | # CORUM  Top non-self |# MSigDB | Most significant
r,single |CORUM | feature contributor | CGP sets |Disease Ontology
feature | features association

(P < 0.05)

APOL1 apolipoprotein L1 APOL1 complex B (APOL1, APOAL, 0.118 0.435 5 APOA1 20 Kidney disease

HPR, EN1, IGHM) (P =0.00011)

BORCS8 BLOC-1 related BORC complex 0.189 0.456 8 BORCS7 5
complex subunit 8

CACNAIA | calcium voltage-gated | G protein complex (CACNA1A, GNBI, 0 0.305 3 GNG2 31 Familial hemiplegic
channel subunit GNG2) migrane
alphal A (P =0.00032)

CAPZB capping actin protein | CAPZA3-CAPZB complex 0.032 0.719 22 WASHC2A 19
of muscle Z-line
subunit beta

CMC1 C-X9-C motif Cytochrome c oxidase, mitochondrial 0.274 0.615 13 MT-CO1 10 Osteoarthritis
containing 1 (P =0.002)

COL18A1 | collagen type XVIII | ITGA5-ITGB1-CAL4A3 complex 0.056 0.359 3 ITGA5 82
alpha 1 chain

CPLX3 complexin 3 SNARE complex (VAMP2, SNAP25, 0.478 0.515 6 SNAP25 6 Asphyxia

STX1a, STX3, CPLX1, CPLX3, CPLX4) neonatorum
(P =0.013)
DAGI1 dystroglycan 1 UTM-SGCE-DAGI1-CAV1-NOS3 0.251 0.604 6 CAV3 33 Muscle tissue
complex disease (P = 0.0023)

DLG4 discs large MAGUK | DLG4-DLGAP1-SHANK3 complex 0 0.51 6 FYN 18 Schizophrenia 4
scaffold protein 4 (P =0.036)

EPN1 epsin 1 RalBP1-CCNB1-AP2A-NUMB-EPN1 0.098 0.453 5 CCNB1 6

complex

ESPL1 extra spindle pole ESPL1-CDC2 complex -0.372 0.1 3 PTTG1 55 Spindle cell cancer
bodies like 1, separase (P =0.03)

F7 coagulation factor Factor-Xa-TFPI-factor-VIla-tissue factor 0 0.479 4 F10 27 Factor VII
viI complex deficiency

(P =0.0014)

GNB1 G protein subunit G protein complex (BTK, GNG1, GNG2) 0.195 0.665 28 PTHIR 53
beta 1

GP1BA glycoprotein Ib ITGA2b-ITGB3-CD9-GP1b-CD47 0.262 0.523 6 VWE 12 Blood platelet
platelet subunit alpha | complex disease (P = 0.0006)

GTF2F1 general transcription | RNA polymerase IT complex, (CDK8 0.18 0.644 44 GTF2F2 17
factor IIF subunit 1 complex)

HSPAIA | heat shock protein HSP70-BAG5-PARK2 complex 0.182 0.48 42 HSPAS8 96 Ischemia
family A (Hsp70) (P=0.017)
member 1A

HUS1B HUSI1 checkpoint 9b-1b-1 complex 0 0.57 2 RAD1 0 Testicular Leydig
clamp component B cell tumor

(P =10.032)

IDH3B isocitrate Isocitrate dehydrogenase [NAD], 0.158 0.431 3 IDH3A 37
dehydrogenase (NAD | mitochondrial
(+)) 3 non-catalytic
subunit beta

IRAK2 interleukin 1 receptor | IRAK1-IRAK2 complex 0.227 0.484 2 (Self) 33 Lymphocytic colitis
associated kinase 2 (P =0.018)

(Continued)
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Table 1. (Continued)

Gene Gene name Representative CORUM complex name | Testset |Testsetr, # CORUM  Top non-self # MSigDB  Most significant
r,single | CORUM | feature contributor | CGP sets | Disease Ontology
feature | features association

(P < 0.05)

ITGA2B integrin subunit ITGA2b-ITGB3-CD9-GP1b-CD47 0.204 0.48 12 TGM2 30 Blood platelet

alpha 2b complex disease

(P = 0.00038)

KCNQ2 potassium voltage- KCNQ2-KCNQ3 complex 0.007 0.331 2 KCNQ3 13 Epilepsy

gated channel (P =0.0012)

subfamily Q member

2

LAMAS laminin subunit ITGA6-ITGB4-LAMAS5 complex 0.192 0.466 6 ITGB4 47 Placental infarction

alpha 5 (P =0.024)

LRP5 LDL receptor related | Norrin receptor complex 0.121 0.442 3 FZD4 26

protein 5
MPP3 MAGUK p55 scaffold | CADM1-4.1B-MPP3 complex -0.069 0.685 14 ITGB2 20
protein 3
MRPL53 | mitochondrial 39S ribosomal subunit, mitochondrial 0.21 0.654 78 MRPLI12 4
ribosomal protein
L53

NDUFAF1 | NADH:ubiquinone | Ecsit complex (ECSIT, MT-CO2, 0.149 0.443 12 ECSIT 14 Protein deficiency
oxidoreductase GAPDH, TRAF6, NDUFAF1) (P =0.0038)
complex assembly
factor 1

NEDDS$ NEDDS ubiquitin Ubiquitin E3 ligase (CDC34, NEDDS, 0.087 0.343 7 SKP1 22
like modifier BTRC, CULL, SKP1A, RBX1)

NGDN neuroguidin AATF-NGDN-NOL10 complex 0.249 0.538 3 NOL10 9

NPHP4 nephrocystin 4 DVL2-INVS-NPHP4-RPGRIP1L 0 0.36 8 NPHP1 8 Kidney disease

complex (P=0.0011)

PAT] PAT]J crumbs cell CRB1-MPP5-INADL complex 0.27 0.562 11 (Self) 26

polarity complex
component

PCCB propionyl-CoA Propionyl-CoA carboxylase -0.008 0.483 2 PCCA 30 Propionic acidemia

carboxylase subunit (P =0.0048)
beta

PHF21B PHD finger protein | LSD1 complex 0 0.342 13 HMG20A 7 Colon squamous

21B cell carcinoma
(P =0.03)
PHKG1 phosphorylase kinase | Phosphorylase kinase complex -0.629 -0.17 3 (Self) 8 Alzheimer’s disease
catalytic subunit (P =0.041)
gamma 1
PPP3R1 protein phosphatase | Calcineurin-FKBP12 complex 0.263 0.544 3 PPP3CA 21
3 regulatory subunit
B, alpha

PSMB5 proteasome 20S 26S proteasome 0.022 0.53 37 PSME2 43 Multiple myeloma

subunit beta 5 (P =0.037)

PSMB6 proteasome 20S 26S proteasome 0 0.53 37 PSME2 31

subunit beta 6
PSMC3IP | PSMCS3 interacting TBPIP/HOP2-MND1 complex 0.294 0.551 2 MND1 42 Recurrent ovarian
protein germ cell neoplasm
(P =0.017)

PSMG2 proteasome assembly | PAC1-PAC2 complex 0.211 0.472 2 PSMG1 13 Herpes simplex

chaperone 2 (P =0.03)

REV1 REV1 DNA directed | Revl-Rev3-Rev7-Polkappa complex 0 0.5 4 REV3L 14 Brucellosis

polymerase (P =0.0008)
(Continued)
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Table 1. (Continued)

Gene

RPA3

RPGRIPIL

RPS29

SERPINA1

SERPIND1

SMCRS8

TEN1

TNIP2

TTR

UBA52

YBX3

Gene name

replication protein
A3

RPGRIPI like

ribosomal protein
S29

serpin family A
member 1

serpin family D
member 1

SMCR8-C9orf72
complex subunit

TENT1 subunit of CST

complex

TNFAIP3 interacting

protein 2
transthyretin

ubiquitin A-52
residue ribosomal
protein fusion
product 1

Y-box binding
protein 3

Representative CORUM complex name | Testset |Testsetr, | # CORUM  Top non-self  # MSigDB | Most significant
r,single CORUM | feature contributor | CGP sets | Disease Ontology
feature | features association

(P < 0.05)
RPA complex 0.211 0.537 20 RPA2 45 Combined
thymoma
(P =0.048)

DVL2-INVS-NPHP4-RPGRIP1L -0.051 0.289 4 INVS 6 N syndrome

complex (P =0.0079)

Nop56p-associated pre-rRNA complex 0.06 0.455 120 TUBBI1 17

SERPINA1-CTSG complex 0.201 0.467 3 CTSG 73 Lung disease

SERPINA1-ELA2 complex (P =0.000008)

MLL-HCF complex 0 0.581 7 MEN1 17 Cervical cancer

(P =0.00094)

WDR41-(C9orf72-SMCRS)- 0.256 0.571 7 C9orf72 9 Amyotrophic

(FIP200-ULK1-ATG13-ATG101) lateral sclerosis

complex (P =0.026)

CST complex 0 0.383 3 STN1 5 Coats disease

(P =0.016)
TNF-alpha/NF-kappa B signaling 0.161 0.629 25 MAP3K8 17 Malignant
complex histiocytic disease
(P =0.022)
TTR-RBP complex 0.084 0.414 2 RBP4 21 Amyloidosis
(P = 0.0000081)
60S ribosomal subunit, cytoplasmic 0 0.537 79 RPS9 20 Iridocyclitis
Ribosome, cytoplasmic (P =0.026)
H2AX complex IT 0.141 0.424 5 NPM1 55 Lyme disease

https://doi.org/10.1371/journal.pcbi.1010702.t001

(P =0.0012)

Taken together, these results exemplify widespread interdependency of protein levels on
trans locus transcripts, involving not only large megadalton protein complexes but many small
complexes involved in diverse biological processes in the cell. The CORUM feature set consid-
ered here alone contains over 2,700 human complexes derived from CORUM release 3.0 map-
pable to 3,689 proteins with distinct gene names, with a median of 3 proteins per complex (S8
Fig). Thus, small protein complexes are widespread in the proteome and a large fraction of the
proteome could be placed under complex post-transcriptional control that decouples protein
levels from mRNA levels. Moreover, half of the proteins in the CORUM annotations belong to
2 or more distinct complexes (including intermediates and subcomplexes) which suggest fur-
ther opportunities for more complex patterns of interdependent protein and mRNA levels.

Network representation of the interdependencies of protein level
regulations

We next examined whether the interdependency of proteins and trans locus transcripts may
be used to infer potential novel regulatory drivers. To do so, we constructed graphical models
to visualize the connections between each protein and the transcriptome features that contrib-
ute to its predicted level, followed by topological analysis to find hub nodes and extract net-
work patterns. To limit scope, we generated graphs to proteins whose prediction improved in
the CPTAC_8 data set following the inclusion of the CORUM or STRING features (Ar > 0.25)
A directed graph is then generated using a list of edges that connect feature variables
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(transcripts) to target variables (proteins), with the edge weights calculated using a function of
the elastic net coefficients and random forest feature importance of the models for both the
CORUM (S6 Table) and the STRING (S7 Table) feature sets. The resulting network is parti-
tioned into connected components of transcript-protein relationships. The subgraph that cor-
responds to the relationship between PCCA and PCCB as discussed above shows the PCCB
node contributing (as transcript) to its own protein level weakly, and the PCCA node contrib-
uting strongly to the PCCB node (as protein) (Fig 6A). The relationship of CMC1 with other
cytochrome c oxidase complex subunits, as described above, is represented in a wheel and
spokes pattern where multiple transcripts (orange nodes) contribute either positively or nega-
tively to the CMC1 protein level, with MT-CO1 having the strongest positive contributions
(Fig 6B). Another member of the MITRAC module COA3 to which CMCI1 binds likewise
exerts a positive influence on the protein level of CMC1, consistent with the possibility that
interdependent protein and transcript relationships may reflect information related to protein
complex assembly sequences. Larger subgraphs represent instances where two or more protein
target nodes are connected by shared transcript source nodes. Due to the method by which the
graphs are generated, protein hubs (with high in-degrees) are more prevalent, but transcripts
with high outflow activities are also seen that connect two or more protein nodes. A subgraph
in Fig 6C predicts that the transcript levels of SH3KBP1 and CD2AP both contribute to the
predicted protein levels of multiple proteins involved in the RICHI/AMOT polarity complex
and the PI4K2A-WASH complex, and the protein level of WASHCI1 is influenced by genes in
the CCC-Wash (WASH1, FAM21C) complex and the PI4K2A-WASH complex (Fig 6C).

We highlight an instance where mRNA-protein relationships may be examined to generate
new hypotheses. The mitochondrial ribosome is represented in a highly connected subgraph
where the abundances of a majority of complex subunit proteins are each contingent upon
multiple transcripts (Fig 6D). Using topological analysis based on the hierarchical community
detection framework (HiDeF) method [33], we showed that this subgraph preserves the
expected hierarchical relationship between the 28S small and 39S large subunits in forming the
55S mitochondrial ribosome, suggesting the preferential connections within the proteoge-
nomic graphs broadly recapitulate subcomplex assembly (Fig 6E). We then extracted the hub
nodes from the subgraph using the betweenness centrality algorithm, which revealed mito-
chondrial serine beta-lactamase-like protein (LACTB) to be an upstream gene that is highly
connected within the subgraph and exerts a regulatory effect on both small and large mito-
chondrial ribosome subunit components. Feature importance analysis further suggests the
LACTB transcript to have a negative impact on multiple ribosomal mitochondrial proteins
(Fig 6F). Of note, LACTB was previously identified as a new subunit (MRP-L56) of the mito-
chondrial ribosomal large subunit isolated from sucrose gradients [58]. Subsequent work how-
ever has established the LACTB protein as a filament-forming protein that is localized to the
intermembrane space instead away from the mitochondrial ribosomes [59] that possesses in
vitro protease activity [60] and that acts as a tumor suppressor by maintaining post-mitotic dif-
ferentiation states [60]. The physiological function and antiproliferative mechanism of LACTB
are incompletely understood, although induced LACTB expression in cancer cells was found
to affect mitochondrial phospholipid metabolism [60]. The analysis here therefore raises the
possibility that LACTB may also affect oxidative phosphorylation in differentiated cells by reg-
ulating mitochondrial ribosome biogenesis and protein synthesis, which may be validated
experimentally.

A similar hub node analysis from the largest subgraph from the STRING feature set
(S8Table) showed chromogranin A and B (CHGA and CHGB) as inward hubs (i.e., proteins
associated with many transcripts) associated with secreted peptides including CST3, SER-
PINCI1, MFGES, SERPINDI, and others (S9 Fig), which is consistent with the known roles of
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Fig 6. Directed graphs of protein and transcript interrelationships identify candidate regulatory genes. A-C. Examples of directed graphs constructed from
genome-wide relationships of transcript-predicted proteins, containing members of A. the propionyl-CoA carboxylase complex; B. the cytochrome c oxidase,
mitochondrial complex; C. the PI4K2A-WASH complex, the RICH1/AMOT polarity complex, and others. In each subgraph, orange nodes have outflow edges
only (i.e., they are contributing transcripts in the prediction models). Blue nodes are nodes that are connected to other nodes via at least one inflow edge (i.e.,
they represent proteins, and optionally also transcripts if they also have outward edges). Orange edges represent positive coefficients of the transcripts to the
target proteins in the elastic net models; gray edges represent negative coefficients. All edges are directed from transcript to protein, and the widths of the edges
are scaled by the weight. D. A highly connected subgraph of mitochondrial ribosome subunits containing 73 nodes and 834 edges. E. Persistent community
detection and network representation of preferential node connections, showing a hierarchical relationship between the 28S and 39S subcomplex with the
assembled 558 mitochondrial ribosome. F. Network representation of hub nodes defined as 15% of nodes ranked by betweenness centrality, which predicts a
potential role of LACTB as a critical hub that lies upstream of multiple large and small mitochondrial ribosomal protein subunits. Node colors represent the pie
chart diagram of the corresponding GO biological process described in the table. SHAP values of three proteins (MRPL20, MRPL19, MRPS34) are highlighted
showing top model contributors.

https://doi.org/10.1371/journal.pchi.1010702.9006

these acidic glycoproteins as the primary constituents of secretory granules that can regulate
their rate of their formation [61]. Taken together, the topological analysis shown here suggests
mRNA-protein networks may be useful for generating new hypothesis on regulatory drivers
from large proteogenomics data.
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Discussion
Widespread contributions of trans locus transcripts to protein level

Recent work has applied various machine learning models to the computational task of pre-
dicting across-sample protein levels using transcriptomics data, but investigation into the bio-
logical factors that uncouple transcriptome and proteome data have remained limited, with
many studies noting only that predictability may differ across broad functional categories, e.g.,
essential genes or metabolic genes may be less predictable. Here we analyzed cases where pro-
teins are poorly predicted by their cognate mRNA, and showed that the transcript levels of
interacting partners had an outsized contribution to the abundance of proteins of interest.
Although the notion that protein-protein interaction can influence protein abundance post-
transcriptionally is not new; as it is known that supernumerary subunits of protein complexes
can be removed through protein degradation, details of genes that show especially poor
mRNA and protein abundance correlations and the identities of their protein regulators have
remained scarce. The current study provides new evidence from protein prediction models
that protein abundance by other transcripts is common in the proteome, nominating specific
interactions involving not only large megadalton sized multi-protein complexes as previously
observed, but also smaller stable complexes (e.g., propionyl-CoA carboxylase with two sub-
units PCCB and PCCA; calcineurin A and B) in the CORUM feature set and potentially more
transient interactions documented in the STRING feature set. The common presence of small
stable complexes in the proteome greatly expands the repertoire of proteins for which due con-
siderations should be given when directly interpreting transcript level data as representing
protein level information. Moreover, it has been suggested that promiscuous protein-protein
interactions without established biological function may be a common occurrence during the
co-evolution of functional protein-protein interactions [62]. The occurrence of such stable but
non-functional interacting pairs could further increase the scope of trans locus protein regula-
tion which would have implications on the predictability of protein levels from mRNA levels.
The imperfect correlation between protein and mRNA points to orthogonal information
that exists between transcript and protein regulations, which underpins the untapped potential
for further multi-omics integration to derive new insights [63]. The use of protein correlations
to find causal insights for post-transcriptional regulations has previously been explored in other
contexts, which looked for anti-correlation between E3 ubiquitin ligases with known proteins
or ubiquitination sites of interest, which may control their protein level by virtue of post-trans-
lational degradation [18,24]. Extending this intuition towards multi-omics correlations, we
used directed graphs generated from the model coefficients and feature importance of trans
locus transcripts to represent the interaction patterns between the transcripts and proteins of
interest. This in turn nominated a number of hub proteins whose abundance is contributed by
multiple transcripts and hub transcripts that regulate multiple proteins, and enabled commu-
nity detection analysis to find the relationships between biological processes in protein and
mRNA correlation networks. As more data continue to become available, we foresee that graph-
ical models will be useful for finding more trans locus regulations of protein levels, such as
those that represent known assembly sequential steps or post-transcriptional regulators. These
graphical models may be used to generate testable hypotheses or find utility in predicting exper-
imental outcome, barring confounders or reverse causality effects. For instance, in the case of
the actin related protein 2/3 complex, one might predict that within a certain concentration
range an overexpression of ACTR3 and ARPC4 will be more effective in modulating ARPC3
protein levels than augmenting the expression of ARPC3 itself, which is readily testable by
experimentation. More generally, the results here corroborate the importance of post-transcrip-
tional regulation including protein degradation and turnover in modulating protein levels.
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Limitations of the study

Significant differences in protein regulations likely occur in different cell and tissue types. The
predictive models here are trained using publicly available CPTAC data from 8 cancer types,
which contain transcriptome and proteome data from both tumor and normal adjacent tissue
samples. In prior work, we found general concordance between protein and mRNA correla-
tion in CPTAC samples vs. GTEx tissue proteomics data [15]. However, other studies that
compared protein and mRNA correlation in tumors and normal adjacent tissues have found
higher inter-sample correlation in tumor samples [21,22], which may be attributable to the
increased translation rates in cancer. Hence, additional discordant cases between proteins and
mRNA likely remain to be discovered that are omitted here. Sample difference may also
explain the observation from GTEx proteomics that secreted proteins are associated with pro-
tein and mRNA discordance [7] as one might intuitively assume but which is not apparent in
the analysis here. The cases used for training the model are not labeled by their cancer type or
their tumor vs. normal adjacent tissue designation, which would likely have availed overall pre-
dictive performance.

We performed the analysis using expression data from TCGA/CPTAC RNA sequencing
experiments through the cptac Python API, which retrieves the final data tables from the flag-
ship CPTAC papers of each individual cancer type [25]. Although each TCGA/CPTAC cancer
subtype project follows an overall consistent experimental design and data acquisition strategy,
minute differences exist in the processing pipelines used to analyze the RNA sequencing data
(e.g., STAR vs. Bowtie2) and gene expression measure (e.g., RPKM vs. FPKM) which could
bias gene expression values across cancer types. Likewise, there are subtle differences in the
protein expression data in each cancer type (e.g., search engine, isotope tags). As our goal here
is not to compare trends across cancer types, we have taken inspiration from the CPTAC
Dream Challenge submissions that improved overall predictions by borrowing information
across cancer types. However, it is also known that different data sets may present different
variability. Future work may employ uniformed processed data to improve performance and
reduce bias, such as data from the TCGA PanCanAtlas which processed all TCGA cancer
RNA sequencing data uniformly [64], or compare batch correction strategies. To our knowl-
edge, uniformly processed protein data are not yet available at the time of writing. Other
machine learning and deep learning algorithms can likely further boost protein level predic-
tions. We have limited our scope here to comparisons of different feature sets and previously
employed algorithms, and to result interpretation.

Finally, pitfalls must be considered when attempting to interpret predictive models in
search of mechanistic insights. Feature importance in the predictive models represents correla-
tion rather than causality, and hence interpretations can be confounded by independent con-
founders, multicollinearity, and reverse causality. In simple cases such as PCCB-PCCA, given
the emphasis on prior feature selections that prioritize known protein-protein interaction
partners, the logical interpretation would be to assume the hierarchical nature of gene regula-
tions where transcript levels are more likely to affect protein abundance than the opposite, but
this assumption becomes more tenuous as feature sets expand and the number of associations
increase, and in cases such as transcription factor proteins whose abundance can affect tran-
script levels across samples. Future work in this area may employ more sophisticated causal
inference methods to identify regulatory modalities.

Conclusion

In summary, this study compared predictive models of protein levels using different transcript
feature sets, and provided biological interpretations of the results by highlighting trans locus
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transcripts with substantial contributions to protein levels. The analysis here therefore reveals new
details into the gene identity and modality of trans regulation of protein levels, and gives support
to further development of prior transcript feature selection strategies to optimize protein predic-
tion tasks. The results show that the transcript levels of protein-protein interaction partners can
broadly influence protein abundance in a tissue, which has implications on the interpretations of
transcriptomics data and on understanding the architecture of proteome composition regulations.
With further refinement of feature selection and feature engineering methods and the availability
of large data sets, we foresee that similar approaches to those shown here will provide valuable
new insights into post-transcriptional mechanisms of protein regulations.

Supporting information

S1 Fig. Model performance measured by additional metrics. A. Box plots of test set normal-
ized root mean square error (NRMSE) between the transcript-predicted and actual protein
level for each protein are shown across five feature sets (column: single/self transcript,
CORUM interactors, STRING high-confidence associated proteins; STRING low-confidence
associated proteins, and all transcripts) and three algorithms (multiple linear regression, elastic
net, and random forest). In each plot, x axis denotes the number of CPTAC data set used to
train the models box: interquartile range; whiskers: +/- 1.5 IQR. B. As above, but for test set
goodness-of-fit (R).

(PDF)

S2 Fig. A. Model performance in single cancer data sets. Box plots of test set correlation coef-
ficients (r) between the transcript-predicted and actual protein level for each protein are
shown across five feature sets (column: single/self transcript, CORUM interactors, STRING
high-confidence associated proteins; STRING low-confidence associated proteins, and all
transcripts) and three algorithms (multiple linear regression, elastic net, and random forest).
In each plot, x axis denotes the CPTAC cancer type study used to train the models; box: inter-
quartile range; whiskers: +/- 1.5 IQR. B. Model performance when the 8 data sets were com-
bined in the order of decreasing single data set performance.

(PDF)

S3 Fig. Improvements to protein prediction from the incorporation of additional tran-
script features. A-B. Scatterplot showing a significant linear relationship between the number
of low-confidence interactors a protein has as annotated in STRING vs. the increase in test set
correlation between predicted vs. actual protein levels in the Elastic Net models over the self-
transcript feature set (correlation test p: 8.2e-131 for all proteins; 6.5e-130 for proteins with 10
or more interactors). C-D. As above, but for the CORUM feature set.

(PDF)

S4 Fig. Additional proteins with improved predicted levels after inclusion of additional
transcript features. Two additional highlighted proteins with substantial predictability from
transcriptome data upon the inclusion of additional features are shown: A. MICU2, B.
PPP3R1. For each protein, the transcript-trained prediction of protein level is plotted on the x
axis and the actual protein level is plotted on the y axis. Blue: train set, brown: test set. Columns
denote the transcript feature set used to train the model. The number of features used to train
the model in each feature set is shown inside each plot. r: Correlation coefficient.

(PDF)

S5 Fig. Cross-omics co-expression of MICU2 and PPP3R1 with functionally associated
proteins. Two examples of proteins whose abundance is better explained by another transcript
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are shown. A. MICU?2 protein level is predicted by MCU transcript but not its own transcript.
B. PPP3RI1 protein level is explained by PPP3CA transcript level but not its own transcript.
Substantial correlations across transcripts and proteins (> 0.4) are bolded.

(PDF)

S6 Fig. SHAP interpretation of feature importance in A. random forest and B. gradient boost-
ing model output from the CPTAC_8 CORUM feature set. The SHAP values of top transcript
features and their impact on model output are shown for each of six proteins highlighted in
the text (from top to bottom): PCCB, CMC1, PSMG2, SMCRS8, MICU2, PPP3R1.

(PDF)

S7 Fig. SHAP interpretation of feature importance in the CORUM feature set, random forest
model, of a single data set (LSCC), showing largely conserved observations among the
highlighted proteins PCCB, CMC1, PSMG2, SMCRS8, MICU2, PPP3R1. Consistent with the
analysis of the combined CPTAC_8 data set, five of the six proteins are not best predicted by their
cognate transcripts and all but one (MT-CO1) of the top trans locus transcripts are preserved,
which was not among the examined candidate features. Only test set data points are shown.
(PDF)

S8 Fig. Density plot showing the distribution of complex sizes (x:-axis: number of mem-
bers in complex; y-axis: log10 total polypeptide molecular weight in complex) in the anno-
tated feature set derived from CORUM v.3.0. Names of select complexes are labeled. The
majority of complexes are small with a median of 3 proteins per complex.

(PDF)

S9 Fig. The most connected subgraph in the STRING feature set contains 6,319 nodes and
11,161 edges, containing proteins belonging to multiple distinct cellular compartments
and multi-protein complexes. The hierarchical network diagram shows Chromogranin A
and B (CHGA/CHGB) (magenta) and their first-degree inward flow neighbors (green) in the
largest subgraph constructed from the STRING data set. The protein level of CHGA and
CHGB is associated with the transcript levels of multiple secreted peptide coding genes, consis-
tent with these proteins serve to regulate gene expression in secretion pathways.

(PDF)

S1 Table. Table listing performance metrics (test set correlation coefficients, R, NRMSE)
of the tested models, feature sets, and data sets.
(TSV)

S2 Table. Table listing Gene Ontology cellular compartment term enrichment results for
proteins that are well predicted by their transcript levels.
(TSV)

S3 Table. Table listing Gene Ontology cellular compartment term enrichment for proteins
that are poorly predicted by their transcript levels.
(TSV)

S4 Table. Table listing individual genewise model performance metrics (test set correlation
coefficients, R?, NRMSE) in the CP'TAC_8 data set using elastic net models on different
feature sets.

(TSV)

S5 Table. Table listing Gene Ontology cellular compartment term enrichment for proteins
with substantial improvements in prediction performance upon incorporating STRING
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