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Abstract

We performed total RNA sequencing and multi-omics analysis comparing skeletal muscle and
cardiac muscle in young adult (4 months) vs. early aging (20 months) mice to examine the
molecular mechanisms of striated muscle aging. We observed that aging cardiac and skeletal
muscles both invoke transcriptomic changes in the innate immune system and mitochondria
pathways but diverge in extracellular matrix processes. On an individual gene level, we identified
611 age-associated signatures in skeletal and cardiac muscles, including a number of myokine and
cardiokine encoding genes. Because RNA and protein levels correlate only partially, we reason
that differentially expressed transcripts that accurately reflect their protein counterparts will be
more valuable proxies for proteomic changes and by extension physiological states. We applied a
computational data analysis workflow to estimate which transcriptomic changes are more likely
relevant to protein-level regulation using large proteogenomics data sets. We estimate about 48%
of the aging-associated transcripts predict protein levels well (r = 0.5). In parallel, a comparison of
the identified aging-regulated genes with public human transcriptomics data showed that only 35—
45% of the identified genes show an age-dependent expression in corresponding human tissues.
Thus, integrating both RNA-protein correlation and human conservation across data sources, we
nominate 134 prioritized aging striated muscle signatures that are predicted to correlate strongly
with protein levels and that show age-dependent expression in humans. The results here reveal new
details into how aging reshapes gene expression in striated muscles at the transcript and protein
levels.
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Introduction

Skeletal and cardiac muscles are highly specialized tissues that are associated with distinct
functional declines during aging. In aged organisms, there is a progressive loss of skeletal
muscle mass, function, and regenerative capacity. Sarcopenia leads to frailty, diminishes
the capacity for locomotion, limits the physiological role of muscles to regulate systemic
glucose metabolism, and is a strong independent predictor of mortality in the elderly
(Landi et al., 2013; Moore et al., 2014). In parallel, age-associated heart diseases are a
leading cause of mortality and morbidity worldwide. Old age is associated with a decline in
cardiac reserve, stress tolerance, metabolic and functional capacity, and the development of
myocardial fibrosis that reduces the elasticity of the cardiac muscle (Lesnefsky et al., 2016;
Triposkiadis et al., 2019). Hence, existing evidence strongly points to striated muscle tissues
as being key to preserving organismal function and promoting healthspan. Understanding
the molecular mechanisms of aging hearts and skeletal muscles is an important component
in the quest to mitigate and prevent prevalent morbidities in an aging world.

Recent reports have surveyed the transcript level changes in the aging mouse skeletal muscle
(Graber et al., 2021; Lin et al., 2018; Mikovic et al., 2018) or the heart (Bartling et al.,

2019; Benayoun et al., 2019; Greenig et al., 2020). Separate studies have also determined
the transcript (Timmons et al., 2019; Tumasian et al., 2021) and protein abundance changes
(Murgia et al., 2017; Ubaida-Mohien et al., 2019a) in aging human skeletal muscles. Despite
progress however, significant knowledge gaps persist. Specifically, continued investigations
are needed to establish consistent aging signatures in the heart and the skeletal muscle across
multiple models, and to contrast tissue-specific signatures across the two major groups of
striated muscles. Moreover, important questions remain unanswered on whether and how
much of the detected transcriptome changes might be translated to the protein level.

It is now established that transcript and protein levels correlate imperfectly across tissues
and biological samples, where some transcripts may even be negatively correlated with the
abundance of their protein counterpart (Franks et al., 2017; Jiang et al., 2020; Krug et al.,
2020). Because proteins perform the overwhelming majority of biological processes, the
results from transcriptomics data might be differentially relevant to biological processes
based on how well they predict protein-level changes. Recent large studies including GTEX
(GTEx Consortium, 2020; Jiang et al., 2020), CPTAC (Krug et al., 2020; Mani et al., 2021),
and GESTALT (Tumasian et al., 2021) have compared transcriptomics and proteomics

data from matching tissues in large cohorts, and generally find moderate correlation
between RNA and protein levels across samples. Very recently, the NIA GESTALT study
characterized the transcriptome and proteome changes in a large cohort of human skeletal
muscle biopsies from healthy donors across wide age groups (Tumasian et al., 2021), and
found moderate correlation between transcripts and their protein counterparts, with 10 of
the top 20 positively age-variable transcripts also showing age-dependent protein levels over
the lifespan. At present however, large-scale proteomics data of comparable depths remain
far less accessible and common than transcriptomics data, hence there is intense interest in
comparing across omics layers and identifying the transcriptomics signatures in aging and
disease models that are translatable to the protein layer.
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Here we performed total transcriptomic analysis in the heart and the skeletal muscle to
assess global gene expression features of striated muscle aging. We apply a computational
data analysis workflow that: (i) estimates the degree to which the transcriptome changes
may predict changes at the protein level; and (ii) co-analyzes public human transcriptomics
data to pinpoint conserved signatures in human tissues. This approach may be useful for
annotating and prioritizing transcriptomics signatures that are likely relevant to protein-level
regulation.

Experimental

Animals and tissue extraction

All animal protocols were approved by the Institutional Animal Care and Use Committee

at the University of Colorado School of Medicine. C57BL/6J mice were purchased from
Jackson Laboratories (Bar Harbor, ME, USA) and housed in a temperature-controlled
environment on a 12-h light/dark cycle and fed with normal diet and water ad libitum under
National Institutes of Health (NIH) guidelines for the Care and Use of Laboratory Animals.
Young adult mice (~4 months) and early aging mice (~20 months) mice (n=4, 2 male 2
female) were sacrificed, followed by measurement of body weight, heart weight and tibia
length. The left cardiac ventricle and quadriceps femoris muscle were collected and stored at
-80 °C.

Total RNA sequencing

To extract RNA, the tissues were cut into ~1 mm3 cubes on ice. Cold TRIzol (Invitrogen)
was added at 75 pL per mg tissue and tissues were homogenized on a bead mill
homogenizer with 2.8 mm ceramic beads at 10 second duration, speed 5, 5 repeats. The
samples were centrifuged at 16,000 g for 15 minutes at 4 °C and the supernatant was
transferred to RNase-free tubes. RNA extraction was performed using the Direct-zol RNA
Miniprep Plus kit (ZYMO) following manufacturer’s instructions. Total RNA sequencing
was performed on the tissues (~80M reads/ 20 Ghases, 151 nt PE, Zymo Ribo-depleted
library) using Illumina short-read sequencing on a NovaSeq 6000 platform. The data were
mapped to the mouse genome GRCm38.p6 using STAR v.2.7.6a (Dobin and Gingeras,
2016). The mapped transcripts were assembled using Stringtie v.2.1.1 (Kovaka et al., 2019)
against Gencode vM25 gff3 annotations. All sequencing data are available on GEO at
GSE175854.

Liquid chromatography and mass spectrometry

To extract proteins, tissue pieces were lysed in RIPA buffer and Halt protease/phosphatase
inhibitor (Thermo) on a bead mill homogenizer with 2.8 mm ceramic beads, followed

by sonication and centrifugation at 14,000 g for 15 minutes at 4 °C. Protein quantity

was measured using BCA assay (Thermo), after which 100 pg of proteins were digested
using a filter-assisted protocol as described (Manza et al., 2005). Digested peptides were
desalted using C18 spin columns (Pierce). Label-free bottom-up mass spectrometry was
performed using data dependent acquisition on an Orbitrap Q-Exactive HF connected to a
Easy-nLC 1200 nano-UPLC system using typical settings as described (Lau et al., 2019).
Mass spectrometry raw data was converted to mzML using ThermoRawFileParser v.1.2
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(Hulstaert et al., 2020), and searched against UniProt SwissProt (The UniProt Consortium,
2018) reviewed Mus musculus database (retrieved 04/27/2021) with appended contaminant
sequences using MSFragger v.3.2 (Kong et al., 2017), followed by post-processing using
PeptideProphet and ProteinProphet in the Philosopher suite v.3.4.13 (da Veiga Leprevost

et al., 2020) and label-free quantification with match-between-runs using lonQuant v.1.5.5
(Yu et al., 2020). Raw data are available on jPOST (Watanabe et al., 2021) at accession
JPST001197.

Retrieval and analysis of human GTEx v8 data

Human gene expression profiles are from GTEXx v8 release (GTEx Consortium, 2020) data
retrieved from the GTEXx portal. Raw gene count data were first normalized using variance
stabilizing normalization in DESeq2 v.1.30.1 (Love et al., 2014). The normalized read count
data were then sequentially batch corrected with the aid of ComBat (Leek et al., 2012),

first against two GTEX v8 technical metadata variables (extraction batch SMNABTCH and
sequencing batch SMGEBTCH), then against tissue ischemia time SMTSISCH, and finally
against donor death Hardy scale DTHHRDY. Correlations between normalized expression
level and categorical age groups were calculated using ANOVA with Tukey HSD post-hoc
tests. A post-hoc P value < 0.01 is considered significant.

Prediction of protein level from RNA-seq data

To train a model to predict protein levels from RNA-seq data, CPTAC RNA-seq and

mass spectrometry data were retrieved from five published CPTAC studies, namely the
breast (Krug et al., 2020), ovarian (Hu et al., 2020b; Zhang et al., 2016), colorectal
(Vasaikar et al., 2019; Zhang et al., 2014), lung adenocarcinoma (Gillette et al., 2020),

and endometrial (Dou et al., 2020) cancer discovery studies. The expression data were
automatically retrieved in accordance with the CPTAC data use and embargo policies by
using the cptac v.0.9.1 package in Python 3.9. Statistical learning was performed using
scikit-learn 0.24.2 (Lindgren et al., 2021). Transcriptomics data were first standardized using
the StandardScaler method in scikit- learn, after which data were split 80/20 into train and
test sets. Prediction was performed using an elastic net with the ElasticNetCV method in
scikit-learn and with I1 ratios of 0.1, 0.5, 0.7, 0.9, 0.95, 0.99, and 1. An elastic net is chosen
for comparability with the CPTAC DREAM baseline models (Yang et al., 2020). The test
set correlation coefficients, R, and normalized root mean square error (NRMSE) metrics
were reported. A Python script for the retrieval and analysis of the data is provided at
https://github.com/Lau-Lab/CPTACProteinPredictions/.

Estimation of cell type proportion

To estimate cell type proportions in the bulk RNA-seq data, we retrieved Tabula Muris FACS
mouse heart and muscle single-cell RNA sequencing data sets (Tabula Muris Consortium et
al., 2018). The Seurat objects were retrieved and clustered using the FindCluster function

in Seurat v.4.0.1 (Butler et al., 2018). Cluster identity was assigned through manual
interpretation of the Seurat top 10 marker tables. The single-cell and bulk RNA sequencing
data were converted to Bioconductor ExpressionSets, following which cell type proportions
in the bulk RNA sequencing data were deconvolved using MuSiC v.0.1.1 (Wang et al.,
2019). Briefly, this approach model the relative abundance of a gene gin a bulk tissue in
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sample / (Y}p) as a function of the proportion of cell types in the tissue in a sample /in a cell
type & (p;«), the average transcriptome size of cell type kin a sample /(S; ), and the relative
abundance of gene g in subject /in cell type & (6; 4) for all samples and all cell types. Y'is
given by the bulk RNA sequencing data and Sand @are estimated in the single-cell data.
MuSiC uses a weighted non-negative least square regression method to estimate p (Wang et
al., 2019).

Additional statistics and data analysis

Data analysis was performed in R v.4.0.5 and Bioconductor v.3.12 (Huber et al., 2015)

on an x86_64-apple-darwinl7.0 (64-bit) platform. Statistical tests of differential expression
for RNA sequencing reads were performed using DESeq2 v.1.30.1 (Love et al., 2014)

using age and sex as factors after filtering low-read genes as commonly practiced. Here

we removed genes with fewer than 800 read counts across all samples within a particular
tissue from consideration. Following filtering, 17,003 genes in the heart and 16,231 genes
in the muscle remained and were compared. Unless specified, we report the adjusted P
values (P.adj) and log2 fold change (logFC) of the DESeq2 results. Statistics for expression
fold changes in label-free proteomics data were performed using limma v.3.46.0 (Ritchie et
al., 2015) with age and sex as factor to report the log2 fold changes (logFC) of proteins
between old and young animals. Functional enrichment was performed with the aid of fgsea
v.1.16.0 (Sergushichev, 2016) against MSigDB v.7.3 annotations (Liberzon et al., 2011) or
ReactomePA v.1.9.4 (Yu and He, 2016) against Reactome annotations (Fabregat et al., 2018)
loaded in the package. Comparison of correlation coefficients was performed using cocor
v.1.1-3 (Diedenhofen and Musch, 2015).

Results & Discussion

Global features and pathways in aging heart and muscle

We first acquired total RNA sequencing data on the total transcriptome changes in the
heart and the skeletal muscle between young adult vs. early aging mice (4 vs. 20

months) (n=4 each) (Supplementary Table S1). The transcriptome profiles in each organ
are distinguishable by sex, and shows more separation by ages in female than in male
animals (Fig. 1A). On a global level, we considered the cellular pathways that are involved
with age-associated gene expression changes using the fast gene set enrichment analysis
(FGSEA) algorithm. In both tissues, aging is associated with a positive enrichment of
genes involved in innate immune system and neutrophil degranulation (FGSEA P.adj 1.4e-3
heart; 1.0e—2 muscle) as well as GPCR ligand binding terms (P.adj 8.5e-2 heart; 3.1e-3
muscle); and a negative enrichment of genes involved in the respiratory chain (P.adj 3.8e-3
heart; 6.7e-3 muscle), citric acid cycle (P.adj 4.2e-3 heart; 8.1e-3 muscle), and translation
(P.adj 6.9e-2 heart; 1.1e—2 muscle) (Figure 1B). Comparable processes were enriched
using WikiPathways and KEGG terms as annotations (Supplementary Figure S1). A major
discrepancy between the two types of muscle involves genes functioning in extracellular
matrix organization and collagen degradation, which are up-regulated in aging hearts but
down-regulated in aging tissues.
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Closer inspection of the fold-changes of genes making up the leading edges of FGSEA-
enriched terms show a concomitant down-regulation of genes in electron transport and
translation pathways and up-regulation of innate immune system genes (Supplementary
Figure S2A-C). Although muscle contraction genes are implicated in both tissues during
aging, we find that the up-regulated genes differ, with S/n, Myl7, and Myl4 most
prominently induced in the heart as opposed to Myhé6and My/2in the skeletal muscle
(Supplementary Figure S2D), whereas we also observed individual genes in extracellular
matrix organization changed in opposite directions as the pathway enrichment results
suggest (Supplementary Figure S2E).

Taken together, the pathway-level analysis suggests that during normal heart and skeletal
muscle aging, gene expression changes are consistent with a rerouting of gene expression
from mitochondrial metabolism and protein synthesis usage toward inflammatory and
matricellular functional components, although the changes in extracellular matrix appeared
to diverge between the two striated muscle. Our results also add to a chorus of recent
findings that implicate the innate immune system in muscle aging (Graber et al., 2021; Lin
et al., 2018; Ubaida-Mohien et al., 2019b) and other tissues (Benayoun et al., 2019).

Transcriptomic signatures in striated muscle aging

We next considered the signatures implicated in aging at an individual gene level. We

found 358 differentially expressed protein-coding genes in old vs. adult hearts and 276 in
skeletal muscles of identical animals at 10% FDR (237 and 177 at 5% FDR in the heart

and the muscle, respectively) (Supplementary Data S1-S2). Among the induced genes, we
found genes that are previously associated with age-associated diseases as well as genes

not previously associated with aging tissues. Among the genes of interest, nuclear receptor
subfamily 4 group A member 1 (Nr4al) and mothers against decapentaplegic homolog 3
(Smad3), were both significantly decreased in aging skeletal muscle (Nr4al logFC -0.73,
P.adj 3.8e-4; Smad3logFC —0.44, P.adj 2.1e-2). A recent large-scale meta-analysis of 739
human skeletal muscle transcriptomes from endurance or resistance exercise interventions
pinpointed the human SMAD3and NR4A1 genes as a central hub of acute response to
exercise in the skeletal muscle (Amar et al., 2021). Both SMAD3and NR4A1 are acutely
up-regulated after exercise, contradirectional to the observed age-associated repression here.
Smad3encodes the Smad3 protein which interacts with STAT3 and which in skeletal muscle
may function to regulate muscle mass (Chao et al., 2012), whereas Nr4al may function to
regulate mitochondrial biogenesis (Chao et al., 2012), hinting at potential connections of
these genes to the benefits of exercise in delaying age associated muscle and mitochondrial
loss.

Results on an individual-gene level were less conserved with other studies that compared
young and aging mice than pathway changes. For instance, Lin et al. (Lin et al., 2018)
and our data both found strong changes in immune regulation, but Lin et al. reported a
strong decrease in FkHp5in aging skeletal muscle which was not recapitulated in this
study. Instead, we found a significant decrease in Fkbp4 (Figure 1D) in aging skeletal
muscle. Similarly, although both work noted an upregulation of muscle contraction genes
in aging, the specific genes overlap only partially, with Lin et al. reported upregulation of
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Myh7z, Myh3, Tnnt1, among others, and the present data are represented by Myo5a, Tpm?Z,
and 7/nt2 (Supplementary Data S2). Lastly, among the top 20 positively age-correlated
and top 20 negatively age-correlated human genes in the NIA GESTALT study (Tumasian
etal., 2021), we observed some evidence for 5 being possibly recapitulated here (up-
regulated: Skap2, Cfap61, Kcngs; down-regulated: My/1, Casql) at a more relaxed 15%
FDR cutoff. These across-study differences can plausibly arise from the use of arbitrary
significance cutoffs as well as a combination of differences in study design, organism
models, technical variations, and stochastic gene regulations. We hypothesize that both
individual-gene level and pathway level changes contain complementary information into
the molecular mechanisms of aging, which should be taken into account when multiple
studies are compared in meta-analyses.

Interestingly, we identified a constellation of genes coding for secreted proteins, which

was not the focus of prior reports in aging mice. For instance, in the heart, inactive
carboxypeptidase-like protein X2 (Cpxm.2) encodes a secreted protein that is induced in
aging hearts (logFC 1.1, DESeq2 P.adj 9.1e-15). Likewise induced is EGF-containing
fibulin-like extracellular matrix protein 1/fibullin 3 (Efemp) (logFC 1.25, P.adj 2.7e-15),
which encodes an extracellular matrix protein that may be cleaved into a secreted peptide
and that binds with EGF receptor (Figure 1C). Very recently, the NIA GESTALT study

has also found human EFEMP1 to be positively correlated with age in the skeletal muscle
(Tumasian et al., 2021). In the normal aging muscle, osteocrin (Ostr) encodes a secreted
hormone musclin that acts as an exercise induced myokine (Subbotina et al., 2015) but

also functions in the heart where it may protect against apoptosis and inflammation (Hu
etal., 2020a). In the analyzed animals, Ostnis induced in normal aging animals but most
prominently in females (Figure 1D) (logFC 3.3, P.adj 8.0e—4). Bdnfencodes a myokine that
is induced by exercise and regulates energy metabolism at least in female mice (Yang et

al., 2019); we found dimorphic expression with higher expression in female and which is
further induced in aged tissues (logFC 0.9, P.adj 5.9e—4). Other secreted factor encoding
genes changed in aging include Gdf11 (logFC 1.76, P.adj 9.5e-2) in skeletal muscle as well
as Vegfd (logFC 0.85, P.adj 5.8e-2), Frzb (logFC 0.69 P.adj 9.3e-2), Sfrp1 (logFC 0.62,
P.adj 6.6e-3), Fst/4 (logFC 0.57, P.adj 3.6e-3), and Fgf13 (logFC —-0.27, P.adj 4.8e-2) in the
heart (Supplementary Data S1-2).

We identified 20 common protein-coding genes that are differentially expressed in aging

in both tissues at 10% FDR (Fig. 2A). The shared genes show strong positive correlations
(Spearman’s correlation coefficient r 0.65, P 0.0032) with the exception of one outlier
(predicted gene Gm50364), which is repressed in the muscle and induced in the normal
aging heart (Fig. 2B). Among the common genes, formin-1 (Fmn) codes for a myofibril
differentiation factor that plays a role in the formation of adherens junction and is increased
in aged muscles and hearts. Myeloid leukemia factor 1 (M/fI) codes for a protein that may
serve as a negative regulator of cell cycle exit and is suppressed in both aging hearts and
muscles.

To assess whether the gene expression changes were due to changes in cell type
compositions, we decomposed the bulk RNA-seq read count matrices into individual cell
types derived from single-cell sequencing data using weighted non-negative least square
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methods (Supplementary Figure S3). We found no evidence of substantial changes of overall
cell type proportion, suggesting the observed transcriptomic changes are unlikely due to
wholesale changes in cell population in young adult vs. aged hearts and muscles.

RNA-protein correlation and predictability of protein-level changes

To estimate whether the effect of aging transcriptome changes is potentially translated to
proteomic changes, we first applied a statistical learning method against one of the largest
proteogenomics data sets in existence to train a model to predict protein levels using their
cognate transcript levels as proxy. The correlation coefficients, R2 values, and normalized
root mean square errors (NRMSE) values between the transcript-predicted protein level

and empirical mass spectrometry-measured protein levels across subjects are taken as the
protein predictability of a transcript for each gene. In total, we estimated the protein
predictability of 11,896 transcripts (Supplementary Data S3). We found a large range of
predictability where the predicted-actual Pearson’s correlation coefficients ranged from
-0.822 to 0.999 (interquartile range 0.18-0.54) (Figure 3A-B). A small portion of transcripts
(4.5%) had negative correlation with protein levels. The median r of all genes is 0.374
which is comparable to previously reported RNA-protein correlation in comparable data sets
(Eicher et al., 2019; Li et al., 2019; Yang et al., 2020) and in human tissues (Jiang et al.,
2020). We observed no clear relationship between transcript baseline abundance and protein
predictability (Supplementary Figure S4).

We found that poor predictors (r < 0.3) are enriched in pathways involving major
multiprotein complexes, including Reactome Translation (P.adj 2.4e—38), Nonsense-
mediated Decay (NMD) (P.adj 6.4e-21), and Respiratory electron transport (P.adj 1.5e-10)
terms. Good predictors (r = 0.7) are enriched in Reactome Biological oxidations (P.adj
1.8e-6), Extracellular matrix organization (P.adj 2.0e—4), and Metabolism of lipids (P.adj
7.8e-3) terms (Figure 3C). This agrees with emerging themes from cancer and normal tissue
studies. For instance, a large-scale GTEx survey of 32 normal human tissues has found that
secreted proteins and proteins in multi-protein complexes are generally poorly predictable
from transcripts (Jiang et al., 2020), presumably because of additional post-translational
constraints on their steady state levels. The modeled protein predictability values (i.e., test
set correlation between predicted protein level and empirical protein levels in CPTAC)
agree strongly with GTEx RNA-protein Spearman’s correlation coefficients (Figure 3D-
E). This result corroborates that proteins exhibit a wide range of predictability by proxy
transcripts, and hence different transcripts have different intrinsic value in reflecting actual
protein abundance states across tissues, and moreover, that predictions of RNA-protein
agreement are “transferable” across to different samples and based on basic biophysical
constraints. For example, long-half-life housekeeping proteins are usually more predictable
from transcripts whereas the abundance of multi-protein complex members are buffered by
complex stoichiometry and assembly.

To further verify the potential impact of the transcriptome signatures on the proteome,
we performed in-house exploratory proteomics analyses of identical tissues from identical
animals using label-free quantitative tandem mass spectrometry (Supplementary Data S4).
In total, we acquired the MS1 label-free quantity of 1,254 distinct proteins in the heart
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and the skeletal muscle identified with ProteinProphet protein probability = 0.95. We
identified 58 and 76 proteins with nominal limma P < 0.05 and |logFC| = 0.5 in the

heart and the skeletal muscle, respectively, although only 6 proteins reached adjusted P <
0.1, presumably due to the limited depth and breadth of the proteomics profile performed
here. Nevertheless, pathway analysis using FGSEA against MSigDB revealed an enrichment
of similar annotation terms to the transcriptomics data, including Reactome Extracellular
matrix organization (FGSEA permutation P: 3.5e—4) and Innate immune system (P: 0.053)
terms, suggesting the mass spectrometry experiment was able to capture a representative
footprint of the aging proteomes in these tissues.

Not unexpectedly, we found there is a robust correlation between RNA and protein relative
abundance across genes within a tissue (Pearson’s r: 0.51 heart; 0.46 muscle) (Figure 4A).
There was a modest decrease in correlation of RNA and protein levels in aged samples

as previously reported, but in our data this difference was not significant (Fisher’s z P:

0.49 heart 0.46 muscle). The correlation between RNA and proteins weakens significantly
when correlations across samples are considered (Pearson’s r: 0.18 heart; 0.14 muscle)
(Figure 4B). This reflects the distinction between RNA-protein correlation across genes

vs. across samples, and corroborates mounting evidence that show although abundant
proteins tend to have abundant transcripts, transcript changes are imperfectly correlated to
proteins due to post-transcriptional activation (Franks et al., 2017). Nevertheless, when only
age-differentially expressed transcripts (10% FDR) were compared, we observed a general
concordance in the directionality of protein changes (Figure 4C). Notably, RNA-protein
correlation is higher among transcripts with nominal changes (DESeqg2 P < 0.1) that had
higher estimated protein prediction (1 = r = 0.5) than those with lower prediction (0 <r <
0.5) (correlation 0.42 vs. 0.11; cocor P 1.5e-3) (Supplementary Figure S5). The analysis
therefore corroborates the transferability of the learned model and offers supportive evidence
for the adaption of predicted RNA-protein correlations as one optional method to help
prioritize discovered transcript signatures.

Conservation of identified striated muscle aging signatures in human

Because specific genes and pathways may underlie aging processes in different organisms,
we next estimated the extent to which the identified mouse aging transcriptome features
are translatable to humans. To do so, we analyzed the age vs. expression relationship

of GTEx v8 human transcriptomics data. In total, we retrieved 17,382 RNA sequencing
samples including 432 heart left ventricle, 429 atrial appendage, and 803 skeletal muscle
transcriptomes, and performed stepwise normalization for technical, tissue, and donor
batches (Supplementary Figure S6A-E). We then compared whether the normalized gene
expression of each gene signature is correlated with donor age groups in different tissues
in humans. We found overall there are complex trends between identified age-associated
signatures with human gene expression-age group relationship. Only 35% (107/305)

and 44% (97/217) of the analyzed aging genes in the mouse heart and the skeletal

muscle, respectively, had significant age-expression relationship in GTEx v8 (ANOVA P
< 0.01), suggesting not every identified signature is potentially conserved across species
(Supplementary Figure S6). On a global level, up-regulated genes in normal aging mouse
hearts are significantly more likely to be positively correlated in expression with donor age
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groups in human heart left ventricle (Wilcoxon P: 8.0e-5) and atrial appendage (P: 2.8e-2)
samples but not in the other compared human tissues including the kidney cortex (P: 0.33)
or liver (P: 0.27). Moreover, this correlation is not existent when only sexually dimorphic
(sex-differentially expressed at 10% FDR) genes in the mouse are compared in human hearts
(Wilcoxon P: 0.87 for heart - atrial appendage and 0.95 for heart - left ventricle). This

global relationship is considerably subdued for genes that are differentially regulated in
aging muscle, which may suggest that the aging signatures in this tissue are more specific to
species or otherwise show non-linear change over the lifespan (Supplementary Figure S7).

Notably, the age-expression relationships of signature genes are often not preserved in other
tissues despite the gene being expressed at appreciable levels. For example, Efempl is
induced in aging in the mouse data here, and is positively correlated with age group in GTEX
v8 human heart and skeletal muscle tissues but not in the kidney or the liver, despite the
human EFEMPI gene being expressed at a similar baseline level in those tissues (Figure
5A). To corroborate this observation, we acquired and analyzed RNA sequencing data from
the kidney of identical animals (Supplementary Data S5). The data corroborated that there
are no significant changes in EfempZ (logFC 0.20, P.adj 0.28). Likewise, Fkpb4 is not
significantly changed in the kidneys of aging humans in GTEx v8 or the RNA-seq data of
identical animals (logFC 0.03, P.adj 0.92) (Figure 5B); Sod3is correlated with age in human
hearts and muscles but not kidney, whereas we also found no significant changes in mouse
kidney in our RNA-seq data (logFC 0.00, P.adj 1.00) (Figure 5C). Taken together, the results
suggest that normal aging signatures exhibit tissue specificity, both across skeletal and
cardiac muscles as well as between striated muscles and other organs, as well as potential
species specificity, and a selection strategy might be employed to prioritize aging signatures
that show expression trends in humans.

Integrating information from both RNA-protein correlation and human conservation, we
ranked the identified aging signatures based on how well the transcript-predicted across-
sample protein values reflect empirical protein levels (r = 0.5), and moreover selected
signatures that show a significant correlation with age group in human GTEX v8 tissues
(ANOVA P < 0.01). This combined analysis led to 134 of the prioritized transcript signatures
in this study that are potentially more likely to have bonafide relevance in the biology of
aging tissues at the protein levels (Figure 6A-D).

Non-coding genes in striated muscle aging

Lastly, although the focus of this study is to prioritize protein correlation of protein-coding
gene signatures, not all transcripts function only through their translation products, and
non-coding RNAs play important roles in virtually all aspects of biology. As we acquired
total ribosomal-depleted RNA abundance data, we also explored the changes of non-coding
RNASs in aging hearts and muscles including non-poly-A+ transcripts. From the data, we
found 19 non-coding genes to be differentially expressed with age in the heart and 36

in the muscle at 10% FDR, with 3 overlapping (10 and 26 at 5% FDR in the heart and

liver, respectively). Grouping into gene category annotations suggests that the differentially
expressed non-coding genes included sense, anti-sense, and intergenic long non-coding
RNAs (IncRNAs), as well as small nucleolar RNAs and processed pseudogenes (Figure 7A).
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The non-coding RNAs were manually inspected for read mapping and strand specificity.
We recapitulated changes in two maternally imprinted INcRNAs Meg3and Riat, which
were previously found using gPCR array to be decreased in skeletal muscle over the
lifespan (Mikovic et al., 2018)), although Meg3was also found to be increased in senescent
endothelial cells (Boon et al., 2016). We also identified additional age-regulated INcRNAs.
In the muscle, Pletiosis also decreased (logFC -1.41, P.adj 8.8e-10) (Figure 7B), whereas
Foxo60s is decreased in aging (logFC —0.63, P.adj 0.002), and was previously found to

be depressed in insulin resistant muscle (Figure 7C). In the heart, the IncCRNA Mhrtis
located on the opposite strand of mouse My#7and has been associated with the regulation
of Myh6l Myh7 ratios as well as protection against pathological cardiac remodeling (Han

et al., 2014); in the data, we found M#Artto be drastically reduced (logFC —0.44, P.adj
2.7e-7) in aged hearts. Among the age-regulated INcRNAs, five (Meatl, Plet1os, Foxo60s,
Peg13, Mhrt) were previously found to have potential translatability in smProt (Hao et al.,
2018) or engaged in ribosomes in the mouse heart (van Heesch et al., 2019), suggesting a
possibility that they may be translated. A growing number of microproteins are known to
be translated in striated muscles. Future work combining transcriptomics and proteomics
approaches might determine whether they are differentially regulated in aging or participate
in associated pathophysiological processes.

Limitations and Future Directions

There are several important limitations that pertain to the experimental results here. The
aged animals (20 months) used here are comparatively younger than the C57BL6/J mice in
some other studies (22—28 months) (Bartling et al., 2019; Graber et al., 2021; Greenig et al.,
2020; Mikovic et al., 2018), which might decrease the sensitivity of identifying differentially
expressed genes across age groups in the RNA sequencing data and omit signals that only
appear in very elderly animals (Graber et al., 2021). Although the number of animals used
(n=8) here is not atypical for large-scale discovery experiments using genetically identical
animals in controlled laboratory settings, the cohort size suggests genes with smaller effect
sizes would be omitted and a larger sample size is needed for further stratification, such as
to detect the contribution of the age-sex interaction term that modulates sex-specific aging
features.

We analyzed gene expression in the mouse quadriceps femoris skeletal muscle. In human,
the quadriceps femoris contains a mixture of fast-twitch glycolytic fibers and slow-twitch
oxidative fibers, which present different gene expression regulations and functions across
the lifespan with more prominent fast-twitch muscle decline with age (Grosicki et al., 2021;
Trappe et al., 2003). In addition, physical activities have emerged as a major modifier

of muscle biological age and aging processes, but this was not considered in the current
study (Cartee et al., 2016; Sanford et al., 2020). Future work might compare individual
muscle fibers across normal and exercised groups to further tease out functionally relevant
signatures that correlate with aging and exercise.

We performed only a label-free proteomics experiment of limited depth here, as our
major goal was to compare transcriptomics and proteomics fold change. Follow-up studies
might use deep quantitative proteomics comparison with common stable isotope labeling
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mass spectrometry techniques to help reveal specific proteomics features of aging that are
not apparent at the transcript level, or identify non-canonical translation products using
proteogenomics methods. Lastly, we find that the current model remains insufficient to
yield a significant improvement in predicting protein-level changes (data not shown), but
the performance of transfer learning approaches is expected to continue to benefit from
algorithmic advances and the accrual of large data sets in closely related tissues and species.
Future work might apply a full-fledged transfer learning strategy by applying the learned
model directly to a new set of transcriptomics data to predict protein level changes in a
system.

Conclusion

This study examined the aging transcriptome profiles in skeletal and cardiac muscles. Our
results provide further evidence to the emerging view that points to extracellular matrix,
mitochondrial, and innate immunity processes as distinguishing factors in aging tissues.
Notably, the data also point to several new discoveries of age-associated genes encoding for
secreted signals, suggesting age-associated myokines and cardiokines present a promising
avenue for further understanding the molecular mechanisms of heart and muscle aging. A
number of identified signatures are specific to striated muscles aging while unchanged over
age in other tissues, and hence may be particular to muscle aging processes. Comparisons
to public human transcriptomes data showed that 35-45% of the aging signatures show
age-dependent expression in corresponding human tissues, suggesting a subset of transcript
signatures may be prioritized that are more likely conserved in humans.

Prioritizing gene lists remains an important bottleneck in deriving actionable interpretations
from large-scale omics studies (Jourquin et al., 2012; Lau et al., 2018). Here we show

a computational workflow that transfers the predicted correlation between transcript and
protein levels trained from a large data set to a newly acquired data set. Recent reports

in the literature have consistently found low to moderate RNA-protein correlation. To

our knowledge, this work is the first to explicitly take into consideration differential RNA-
protein correlation coefficients as a means to prioritize potential aging-associated transcript
signatures from RNA-sequencing data. We found about 48% of the identified aging-
associated transcript signatures are predicted to correlate well with the abundance of their
protein counterparts, and used a rule-based strategy to filter for prioritized signatures that are
potentially predictive of protein-level changes. We suggest that the integrated computational
data analysis approach presented here may be applied to future transcriptomics studies in
aging and diseases to help extract potentially high-value signatures, such as those that are
likely to reflect protein-level changes or are translatable to humans.
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Top enriched pathways in aged vs. adult tissues
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Figure 1: Transcriptome changesin young adult micevs. early aging mice.
A. Principal component analysis of normalized gene counts in the left ventricle (top) and

quadriceps femoris (bottom) show separation by sex and age. B. Enriched pathways in aged
vs. adult gene expression in two tissues. C-D. Normalized read counts showing sex and age
expression among selected differentially expressed aging genes in (C) the heart and (D) the
skeletal muscle (FDR <5% with the exception of Camk2b where FDR <10%).
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Figure 2: Shared aging signaturesin aged cardiac and skeletal muscle.
A. Bar chart showing the adjusted P values (x-axis) and log2 fold-changes (log2FC; fill

color) of the 20 aging associated genes identified in both tissues. B. Scatter plot showing

a comparison of fold changes (aged vs. young adult) and a robust positive correlation
(Spearman’s correlation coefficient p 0.65, P 0.0032) between the two tissues. X-axis: log2
fold-change in skeletal muscle; y-axis: log2 fold-change in the heart. Error bars: standard
error of log2 fold-change; line: best-fit linear curve.
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Figure 3: Predictability of protein-level from across-sampletranscript variance.
To estimate whether the quantified transcript changes might translate to the proteome, we

considered the predictability of protein levels from their proxy transcripts on a gene-wise
basis in large proteogenomics data sets. A. An elastic net is applied to 717 samples with
matching transcriptomics and mass spectrometry data in the CPTAC collection. The average
correlation (top) and R? values (bottom) between predicted and actual protein levels across
samples in each of 10,693 genes are shown. B. Examples of an aging signature whose
protein abundance across samples is well predicted by its proxy transcript (Anxal) in
matching samples and one that is poorly predicted (Ugcrcl). Each data point is one CPTAC
sample. Brown: train set; blue: test set. C. Significantly enriched Reactome terms among
transcripts that predict protein well (r = 0.5) or poorly (r < 0.5). Size: protein count in
pathway; fill color: adjusted P value; x-axis: gene annotation ratio. D. Scatter plot showing a
robust correlation between the modeled gene-wise protein predictability here using CPTAC
data with the Spearman’s correlation coefficient values between protein and RNA across 32
tissues in GTEX (r: 0.32, P: 2.6e-220). The modeled protein predictability values predict
strong RNA-protein correlation (p = 0.5) in normal human GTEX tissues with an AUC of
0.69 (inset). E. Boxplot showing a breakdown of binned correlation values against GTEX
correlation, the correlation plateaus at r = 0.5 which may be due to potential overfitting or
cross-sample biological differences.
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Figure 4: Correlation between RNA and protein levels from identical tissues.

0
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Tissue
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A. Scatter plot showing the within-sample across-gene comparisons in the heart (left) and
the skeletal muscle (right) for commonly quantified RNA and their proteins. Fill color:

data frequency within bin. B. Scatter plot showing across-sample comparisons between
RNA and proteins in the aging vs. young adult heart (left) and skeletal muscle (right).

C. Log fold-change comparison at the RNA (x-axis) and protein (y-axis) level among
commonly quantified proteins and transcripts with significant age-associated transcript level
differences. Line: best-fit linear curves for the heart (red) and the skeletal muscle (blue).

Error bars: standard errors of logFC.

Mol Omics. Author manuscript; available in PMC 2022 October 11.




1duosnuepy Joyiny 1duosnuely Joyiny 1duosnuepy Joyiny

1duosnuely Joyiny

Han et al.
[
S
173
1%
o
Q
>
w
<
=z
i
°
Q
N
S
3
E
(<}
=z
[
S
[7]
1%
o
Q
>
w
<
=z
o
°©
Q
N
T
£
E
o
z
[
S
173
0
4
Q
x
w
<
=
o
hel
[}
N
T
E
o
=z

Page 21

EFEMP1
Heart - Left Ventricle (P: 7.7e-3) Heart - Atrial Appendage (P: 2.5e-5) Muscle - Skeletal (P: 9.7e-6) Kidney - Cortex (P: 0.98)
16 o ° 18 4 — 14
o _: 14
. = 1 e
14 4 16 4 D 8 124 9
° 13 4
g “ggen s B H B
2 124 12
. 4
12 4 8 4 M
10 4 L 11 4
LJ L4
20- 30- 40- 50- 60- 70- 20- 30- 40- 50- 60- 70- 20- 30- 40- 50- 60- 70- 20- 30- 40- 50- 60- 70-
29 39 49 59 69 79 29 39 49 59 69 79 29 39 49 59 69 79 29 39 49 59 69 79
FKBP4
Heart - Left Ventricle (P: 0.13) Heart - Atrial Appendage (P: 0.75)  Muscle - Skeletal (P < 2.2e-16) Kidney - Cortex (P: 0.9)
15 4 = 8 16 4 ¢ 184 . 15 4 ¢
L]
L]
14 4 . 16 4 4 4
a 4 ! 14 4 o § —_— !
7] 13 ° : ° ° =
> . [] 14 4 13 ¢
+ . |~ ‘
b -t
Shpmdd o SRR
11 . . (]
et ol e gty
20- 30- 40- 50- 60- 70- 20- 30- 40- 50- 60~ 70- 20- 30- 40- 50- 60- 70— 20- 30- 40- 50- 60- 70—
29 39 49 59 69 79 29 39 49 59 69 79 29 39 49 59 69 79 29 39 49 59 69 79
SOD3
Heart - Left Ventricle (P: 2.4e-4) Heart - Atrial Appendage (P: 0.016) Muscle - Skeletal (P < 2.2e-16) Kidney - Cortex (P: 0.85)
154 ————— . : 16 o e
—_— .
14 4 - 144 o 154 T e— .
13 — 14
8 1 124 ¢
‘2’” 12 4 » * —
N , L] i
104 114 c s
- B 6Llv . :

20- 30- 40- 50- 60- 70- 20- 30- 40- 50- 60- 70- 20- 30- 40- 50- 60- 70- 20- 30- 40- 50- 60- 70-
29 39 49 59 69 79 29 39 49 59 69 79 29 39 49 59 69 79 29 39 49 59 69 79

AGE AGE AGE AGE

Figure 5: Conserved age-expression profiles of selected signaturesin humans.
Box plots showing examples of GTEX v8 human normalized RNA expression levels across

age groups in decadal brackets in four GTEx v8 human tissues (left to right) heart left
ventricle, heart atrial appendage, skeletal muscle, and kidney cortex for A. Efemp1, B.
Fkbp4, and C. Sod3. P values: ANOVA. Asterisks within plots denote Tukey’s post-hoc for
individual group comparison. *: Tukey P < 0.05; **: P < 0.01; ***: P < 0.001; ****: P <
0.0001.
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Figure6: Prioritized age-associated signatures.
A. List of 134 prioritized aging signatures in the heart, skeletal muscle, and those common

to both tissues. Top: paired bars represent —log10 P.adj in the heart and the skeletal muscles,
respectively. B-D. The prioritized signatures had CPTAC RNA-protein correlation r = 0.5
and ANOVA P <0.01 in GTEXx v8 transcript expression against age groups in GTEx v8 heart
left ventricle or skeletal muscle transcriptomes. X-axes correspond to panel A.
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Figure 7. Non-coding RNA signaturesin aging striated muscles.

Foxo6os

A. Bar charts of differentially expressed annotated non-coding RNAS in the heart (top) and
the skeletal muscle (bottom). Colors denote Gencode vM25 annotation gene biotype. B-C.
Examples and genome tracks of two long non-coding RNAs Pletios (B) and Foxo6os (C)

that are differentially expressed in aging skeletal muscle.
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