Increase of a hypoxia-tolerant fish, *Harpadon nehereus* (Synodontidae), as a result of ocean deoxygenation off southwestern China

Bin Kang · Andrew Bakun · Longshan Lin · Daniel Pauly

Received: 26 December 2020 / Accepted: 21 July 2021
© The Author(s), under exclusive licence to Springer Nature B.V. 2021

Abstract We report a sudden explosive rise in abundance off southeastern China of a fish species that is hypoxia-tolerant, Bombay duck (*Harpadon nehereus*, Family Synodontidae), belonging to an Order (the Aulopiformes) encompassing overwhelmingly deep-sea fishes, but which predominantly occurs in coastal water. We suggest that this is made possible by the very high water content of its muscle and other tissues (about 90%, vs 75–80% for other coastal fish), which reduces its oxygen requirements and allows it to outcompete other fish in low-oxygen neritic and estuarine waters. We suggest that the extent to which this drastic shift in abundance and in the resulting community structure in a very extensive and extremely important coastal marine ecosystem offer evidence of growth of ocean deoxygenation along the western edge of the North Pacific Ocean. Also, we suggest that this episode may represent an instructive example of similar disruptions of established marine biological community structures and interlinked life support and natural resource systems that may be expected to emerge under current global trends of climate/environmental change.

Keywords Hypoxia · Water content · Population explosion · Dissolved oxygen · Jellification

The international marine scientific community has become increasingly concerned over a perceived trend toward serious loss of dissolved oxygen from the world’s oceans (Diaz and Rosenberg 2008; Keeling et al. 2010; Bakun 2017). A case in point is the East China Sea Large Marine Ecosystem, a major upwelling zone (Hu et al. 2018), which has become one of the largest near-coastal low-oxygen areas in the world’s oceans (Chen et al. 2007). For example, 18-year time series of dissolved oxygen measurements assembled for two locations along the Minjiang River Estuary shows a strong decline (Fig. 1).

Bombay duck (*Harpadon nehereus*) is a somewhat confusingly named fish species that has long been an important resource for Indian marine fisheries (Bapat 1970) as well as a major component of the marine ecosystem off western India, where hypoxic, and even totally anoxic, zones are particularly pervasive...
Bombay duck (Harpadon nehereus) is quite a remarkable fish in its extremely flaccid, jelly-like body, caused by a very high water content of muscle and other tissue, of around 90% (Bykov 1983; Gopakumar 1997), compared to 70–80% in other neritic fishes (Bykov 1983, and Fig. 3). Indeed, in spite of living in relatively shallow waters, Bombay duck has a water content similar to midwater and deep-water fishes, notably of the Order Aulopiformes (Childress and Nygaard 1973; Drazen 2006; also see FishBase, www.fishbase.org).

The high water contents of midwater and deep-sea fishes allow them to “cheaply” grow relatively large bodies allowing them to have large mouth armed with long fangs (Olson 2017) for ambushing...
large prey in an ecosystem where potential prey are exceedingly rare. This adaptation to food scarcity may also be seen as an “exaptation” sensu Gould and Vrba (1982), i.e., a trait evolved by natural selection which is co-opted for another use, given that it also reduces oxygen demand (Pauly 2019).

From a metabolic standpoint, Bombay duck could perhaps be characterized as a quasi-analog to a jellyfish, which are known to be particularly well adapted to tolerating low-oxygen conditions due to their body mass being composed of about 98% water (Palomares and Pauly 2009; Richardson et al. 2009).

In the waters off western India, Bombay duck inhabits sandy mud bottom for most of the year; however, during the monsoon, it moves into coastal estuaries. Because of this habitual exposure to a variable range of environmental conditions and circumstances, this species has had to evolve a high level of physiological resilience. Bombay duck, which has a wide Indo-Pacific range, used to play only a minor role in Chinese domestic marine fisheries, such that it was not recorded in national statistics as an independent species. Recently, however, Chinese marine fishery landings have showed a transition from such traditional food fishes as large-headed hairtail and large yellow croaker (Larimichthys crocea) which are severely overfished (Liang and Pauly 2017) to a profusion of small pelagic fishes and to a growing dominance of the hypoxia-tolerant Bombay duck (Lin 2009; Yang et al. 2013; Deng et al. 2018; Kang et al. 2018; Li and Kang 2020).

Thus, Bombay duck abundance in fish survey catches (Fig. 1) and in commercial catches has increased (Kang et al. 2018; Fig. 2B), resulting from a spatial expansion northward and a temporal extension, from former confinement within the summer season, to a wider temporal spread lasting from spring into autumn. The massive population growth that this implies has imposed a greatly increased competition for available prey resources within the formerly dominant complex of more traditional food
fish species. Indeed, field observations from the early 2010s indicate that about 90% of Bombay duck stomach contents consist of fishes (Zhang and Jin 2014).

Current global ocean trends of climatic warming and of declining available oxygen would seem to favor the evolved adaptations of the Bombay duck (Fig. 4). Moreover, the expanded Bombay duck population off southeastern China seems to be following an emergent global pattern (Koel et al. 2019), wherein a natural multi-species biological community is changed step by step toward a community largely based on a single dominant species, thereby losing resilience to external interferences that might be much more easily maintained in conjunction with a more diverse species complex.

This regional-scale ecosystem regime shift (Bakun 2005) does offer a warning that ocean deoxygenation may be continuing to progress along the subtropical and temperate western boundary of the Pacific Ocean. This experience might harbingers a future in which the biological resource communities of many marine ecosystems of the world might become less diverse and much more dominated by hypoxia-tolerant forms such as jellyfish (Richardson et al. 2009) and squids (Gilly et al. 2006).

Acknowledgements We thank Ms. Elaine Chu for drafting Figures 1, 3, and 4.

Funding B.K. and L.L. were funded by National Natural Science Foundation of China (No. 41976091) and the National Key R&D Program of China (No. 2018YFC1406302). A.B. and D.P. declare no funding.

The authors declare no competing interests. All authors agreed to participate, and for this contribution to be published. No ethics approval of code was required, and all data used for this contribution are included in its text and/or exhibits.

References

Bakun A (2017) Climate change and ocean deoxygenation within intensified surface-driven upwelling circulations. Phil Trans R Soc A 375:20160327

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.