

STRETCHING THE DEFINITION OF 'PAST' TO ITS LIMITS

With this contribution from Professor **Daniel Pauly** of the **Institute for the Oceans and Fisheries** at the **University of British Columbia** which stretches our definition of the past much deeper in time, we simultaneously are presented with his challenge, and I quote, of looking so far back into the past "to a limit that no one will be able to stretch further." (To see Prof. Pauly's prior look in OPN into deeper time, see the 25th edition). ~RMW

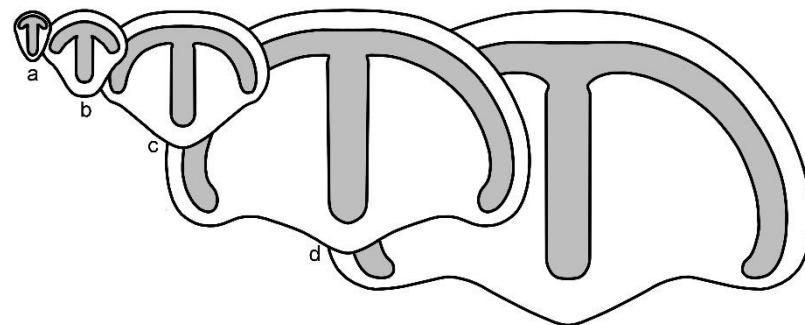
The most ancient growth curve

Daniel Pauly

Institute for the Oceans and Fisheries,
University of British Columbia,
Vancouver, B.C., Canada, V6T 1Z4

As a student, I learned that the Cambrian (539 – 487 million years ago) was the earliest period with abundant and varied metazoan life. However, this 'sudden' appearance of a wide range of fossils was hard to explain, not least to Charles Darwin, whose conception of evolution was slow and gradual.

Then, a book appeared that suggested the invention of eyes facilitated predation, which led to the need for armor and consequently, to bodies that left easily recoverable fossils¹. Voilà, the Cambrian explosion was explained.


Except for sponges, whose chemical traces appear in the fossil record over 600 million years ago, the first metazoans seem to have appeared at the end of the period now known as the Ediacaran, which lasted 96 million years, and ended with the Cambrian. These metazoans had no head, no mouth, no appendages to grasp things with, and therefore no way to prey on their neighbors.

But they had to eat, and they did – at least in the small Ediacarans of the genus *Parvancorina* – by orienting themselves against water currents near the sea floor, which were rendered turbulent by a ridge in front of their bodies. This turbulence then caused food particles (bacteria, phytoplankton) to be deposited on their back (see Figure 1), where they were consumed by phagocytic dorsal cells². Thus, they had the energy required for growth, but how did they grow?

Fortunately, various sites have been identified, starting in the Ediacaran Hills of South Australia, where large numbers of these animals were in underwater avalanches. Some of the sites have yielded hundreds of specimens of different sizes, all entombed at the same time.

When dug up and studied, neat length-frequency (L/F) data sets can thus be produced which can be analyzed using methods used for studying the growth of tropical fish and invertebrates, both of which lack the annual 'rings' that make it easy to 'age' them.

As I earlier did for Ordovician trilobites³, I applied the Electronic Length-Frequency Analysis (ELEFAN) software I developed in the early 1980s to study the growth of tropical fishes to the L/F data of 221 *Parvancorina minchami* collected by paleontologists from rocks around the White Sea, in Northwestern Russia, and estimated the growth parameters of the standard von Bertalanffy growth equation from these data⁴.

Figure 1. Body shape changes with growth in the Ediacaran *Parvancorina minchami*. Left: ‘Juvenile’ stages (a – c); d: ‘pre-adult’ stage. Right: ‘adult’ stage.

So, now we know how Ediacaran animals around what is now the White Sea grew: it took them 3–4 years to reach lengths of approximately 2 cm. Paleontologists can now use this growth curve to draw various inferences about the ecology of these weird animals.

As for me, I might have traced the growth curve for the most ancient animal so far, i.e., based on fossils at least 550 million years old. Will I make it into the *Guinness Book of World Records*?

References

- 1 Parker, A. 2003. *In the Blink of an Eye*. Perseus Publishing, Cambridge, MA, 352 p.
- 2 Darroch, S. A., L. A. Rahman, B. Gibson, R. A. Racicot, and M. Laflamme. 2017. Inference of facultative mobility in the enigmatic Ediacaran organism *Parvancorina*. *Biology Letters* 13:20170033.
- 3 Pauly, D. 2022. Trilobites’ growth may have resembled that of modern marine crustaceans. *Ocean Past News* July-August (25): 3-4.
- 4 Ivantsov, A., M. Zakrevskaya, A.H. Knoll, M.A. Fedonkin and D. Pauly. 2025. the growth of the enigmatic Ediacaran *Parvancorina minchami*. *Paleontology* 1-8, <https://doi.org/10.1017/pab.2024.55>

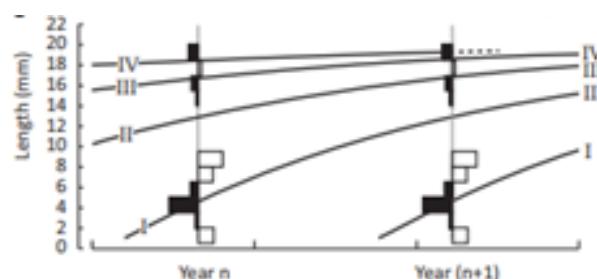
Paleobiology

www.cambridge.org/pab

Article

Cite this article: Ivantsov, A., A. H. Knoll, M. Zakrevskaya, M. Fedonkin, and D. Pauly (2025). Growth of the enigmatic Ediacaran *Parvancorina minchami*. *Paleobiology*, 1-8. <https://doi.org/10.1017/pab.2024.55>

Growth of the enigmatic Ediacaran *Parvancorina minchami*


Andrey Ivantsov¹ , Andrew H. Knoll² , Maria Zakrevskaya¹ , Mikhail Fedonkin³ and Daniel Pauly⁴

¹Borissiak Paleontological Institute of the Russian Academy of Sciences, Moscow 117647, Russia

²Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138, U.S.A.

³Geological Institute of the Russian Academy of Sciences, Moscow 119017, Russia

⁴Sea Around Us, Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada

Figure 6. Growth and mortality of the Ediacaran *Parvancorina minchami* Glaessner,