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Abstract

We establish a precise unitary equivalence between the circle Laplacian −π∂2
θ on S1

and a compactified version of the Berry-Keating operator −π(x∂x)
2 on the interval

[1, e2π) with measure dx/x. Both operators share the discrete spectrum {πk2 : k ∈
Z}. The ϕ(n)-averaging operators, defined using coprime residue groups (Z/nZ)×,
translate between the two settings via the logarithmic coordinate transformation,
providing a precise arithmetic characterisation of the operator domains. The domain
is specified via pullback from the circle Laplacian.
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1 Introduction

1.1 Mathematical context

The Hilbert-Pólya conjecture suggests that zeros of the Riemann zeta function might
correspond to eigenvalues of a self-adjoint operator. In 1999, Berry and Keating proposed
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the operator H = xp (or equivalently H = −(x∂x)
2) as a candidate [1]. However, they

noted that while the operator is formally self-adjoint, “its domain remains to be specified”
[1].

1.2 Our approach

We present a mathematically rigorous connection between two operators:

(1) The circle Laplacian −π∂2
θ on S1, whose spectral theory is classical and complete.

(2) A compactified Berry-Keating operator −π(x∂x)
2 on [1, e2π), whose domain specifica-

tion we resolve via unitary equivalence.

The logarithmic coordinate transformation x = eθ provides a unitary equivalence
between these operators when appropriate measures are chosen. The original Berry-
Keating operator on [1,∞) has continuous spectrum. We work on the compact interval
[1, e2π), which yields discrete spectrum.

The ϕ(n)-averaging operators, defined using the coprime residue groups (Z/nZ)×,
translate between the two settings: on the circle they average over rotations, while on
the interval they average over dilations.

1.3 Structure

Section 2 establishes the Hilbert spaces and unitary equivalence. Section 3 defines
the operators and proves spectral equivalence. Section 4 translates the ϕ(n)-averaging
structure. Section 5 examines domain characterisation. Section 6 discusses the heat
kernel and connections to theta and zeta functions.

2 Hilbert space setup and unitary equivalence

2.1 Natural measure choices

We work with unnormalised Lebesgue measure on the circle and logarithmic measure
on the interval.

Definition 2.1. Define the Hilbert spaces:

HS = L2(S1, dθ), where S1 = R/(2πZ),

HI = L2([1, e2π), dµI), where dµI(x) =
dx

x
.

The measure dµI(x) = dx/x is invariant under dilations x 7→ λx, while dθ is the
translation-invariant measure on S1.

2.2 Unitary transformation

Definition 2.2. Define U : HS → HI by (Uf)(x) = f(lnx) for x ∈ [1, e2π).

Theorem 2.3. U is a unitary operator with inverse U−1 : HI → HS given by (U−1g)(θ) =
g(eθ) for θ ∈ [0, 2π).

Proof. For f ∈ HS ,

‖Uf‖2HI
=

∫ e2π

1
|f(lnx)|2dx

x
.

Let y = lnx, so x = ey, dx/x = dy. Then x ∈ [1, e2π) corresponds to y ∈ [0, 2π).

‖Uf‖2HI
=

∫ 2π

0
|f(y)|2dy = ‖f‖2HS

.

The map is bijective with the given inverse.
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Remark 2.4. Under the metric ds2 = dx2/x2 on [1, e2π) and ds2 = dθ2 on [0, 2π), the map ln
is an isometry.

3 Operator definitions and spectral equivalence

3.1 Circle Laplacian

Definition 3.1. Define the operator ĤS : D(ĤS) ⊂ HS → HS by:

ĤS = −π
d2

dθ2
,

with domain D(ĤS) = H2
per(S

1).

3.2 Compactified Berry-Keating operator

Definition 3.2. Define the operator ĤI : D(ĤI) ⊂ HI → HI by:

ĤI = −π

(
x
d

dx

)2

, D(ĤI) = U(D(ĤS)).

3.3 Unitary equivalence and spectrum

Theorem 3.3. ĤI = UĤSU
−1 is self-adjoint on D(ĤI).

Proof. For g ∈ D(ĤI), let f = U−1g. Then g(x) = f(lnx).

x
dg

dx
= f ′(lnx) =⇒

(
x
d

dx

)2

g = f ′′(lnx).

Thus, ĤIg = −πf ′′(lnx) = (UĤSU
−1g)(x).

Theorem 3.4. σ(ĤS) = σ(ĤI) = {πk2 : k ∈ Z}.

4 ϕ(n)-averaging operators

4.1 Averaging on the circle

Definition 4.1. Define PS
n : HS → HS by:

(PS
n f)(θ) =

1

ϕ(n)

∑
r∈(Z/nZ)×

f

(
θ +

2πr

n

)
.

4.2 Averaging on the interval

Proposition 4.2. For g ∈ HI ,

(P I
ng)(x) =

1

ϕ(n)

∑
r∈(Z/nZ)×

g
(
x · e2πr/n

)
.

4.3 Action on eigenfunctions

Lemma 4.3. For gk(x) = xik, P I
ngk = cn(k)

ϕ(n) gk, where cn(k) is the Ramanujan sum.

Lemma 4.4. For fixed k ∈ Z, limn→∞
cn(k)
ϕ(n) = δk,0.
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5 Domain characterisation via averaging

Theorem 5.1. For g ∈ D(ĤI) where g(x) =
∑

k∈Z akx
ik, we have

lim
n→∞

P I
ng = a0 in HI .

6 Heat kernel and zeta connections

6.1 Heat kernels

Theorem 6.1. Tr(e−tĤS ) = Tr(e−tĤI ) =
∑

k∈Z e
−πk2t = θ(t).

6.2 Mellin transform and zeta function

Theorem 6.2. For Re(s) > 1,

π−sΓ(s)ζ(2s) =
1

2

∫ ∞

0
(θ(t)− 1)ts/2

dt

t
.

7 Conclusion

We establish unitary equivalence between the circle Laplacian and the compactified
Berry-Keating operator. The domain is specified via pullback, andϕ(n)-averaging provides
an arithmetic bridge between rotations and dilations.
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