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Abstract

We establish a precise unitary equivalence between the circle Laplacian —793 on S!
and a compactified version of the Berry-Keating operator —(zd,)? on the interval
[1,e?™) with measure dx/x. Both operators share the discrete spectrum {7k? : k €
Z}. The p(n)-averaging operators, defined using coprime residue groups (Z/nZ)*,
translate between the two settings via the logarithmic coordinate transformation,
providing a precise arithmetic characterisation of the operator domains. The domain
is specified via pullback from the circle Laplacian.
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1 Introduction

1.1 Mathematical context

The Hilbert-Pdlya conjecture suggests that zeros of the Riemann zeta function might
correspond to eigenvalues of a self-adjoint operator. In 1999, Berry and Keating proposed



the operator # = zp (or equivalently H = —(20,)?) as a candidate [1]. However, they
noted that while the operator is formally self-adjoint, “its domain remains to be specified”

(1.
1.2 Our approach

We present a mathematically rigorous connection between two operators:

(1) The circle Laplacian —79; on S', whose spectral theory is classical and complete.
(2) A compactified Berry-Keating operator —r(zd,)? on [1, ¢2"), whose domain specifica-
tion we resolve via unitary equivalence.

The logarithmic coordinate transformation 2 = ¢’ provides a unitary equivalence
between these operators when appropriate measures are chosen. The original Berry-
Keating operator on [1, o) has continuous spectrum. We work on the compact interval
[1,e2™), which yields discrete spectrum.

The (n)-averaging operators, defined using the coprime residue groups (Z/nZ)*,
translate between the two settings: on the circle they average over rotations, while on
the interval they average over dilations.

1.3 Structure

Section [2| establishes the Hilbert spaces and unitary equivalence. Section |3| defines
the operators and proves spectral equivalence. Section [4 translates the ¢(n)-averaging
structure. Section [5] examines domain characterisation. Section [6] discusses the heat
kernel and connections to theta and zeta functions.

2 Hilbert space setup and unitary equivalence

2.1 Natural measure choices

We work with unnormalised Lebesgue measure on the circle and logarithmic measure
on the interval.

Definition 2.1. Define the Hilbert spaces:

He = L*(S',dh), where S' = R/(2nZ),

My = LX([1,¢7),dur), where dys(x) = 2

The measure du;(z) = dz/x is invariant under dilations = — Az, while df is the
translation-invariant measure on S*.

2.2 Unitary transformation

Definition 2.2. Define U : Hgs — H; by (Uf)(x) = f(Inz) for z € [1, %),
Theorem 2.3. U is a unitary operator with inverse U~! : H; — Hg given by (U~ 1g)(0) =
g(e?) for 6 € [0, 2n).

Proof. For f € Hg,

2m

[0S, = [ 17na)

Lety =Inz,soz = ¢¥, dv/x = dy. Then x € [1,2™) corresponds to y € [0, 27).

Pdl‘
—

27
wm@-% F@)Pdy = | 1.

The map is bijective with the given inverse. O
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Remark 2.4. Under the metric ds? = dz?/22 on [1,¢*") and ds? = df? on [0, 27), the map In
is an isometry.

3 Operator definitions and spectral equivalence
3.1 Circle Laplacian
Definition 3.1. Define the operator Hg : D(Hg) C Hg — Hgs by:

~ d?
Hg= 71—
s Wd92’

with domain D(Hs) = H3e(S1).
3.2 Compactified Berry-Keating operator

Definition 3.2. Define the operator H;: D(ﬁ;) C H; — Hy by:

2
Hy=—n (%‘i) ., D(H;)=U(D(Hy)).

3.3 Unitary equivalence and spectrum
Theorem 3.3. H; = UHgU ! is self-adjoint on D(Hj).
Proof. For g € D(Hy),let f = U~'g. Then g(z) = f(Inz).

2
QZ% = f'(lnz) = <xjx) g= f"(Inz).

Thus, Hyg = —nf"(Inz) = (UHsU 'g)(z). O
Theorem 3.4. o(Hg) = o(H;) = {7k? : k € Z}.
4 o(n)-averaging operators

4.1 Averaging on the circle

Definition 4.1. Define P? : Hg — Hg by:

EENO) = — 3 f<e+27”").

QO(’I”L) re(Z/nZ)* "

4.2 Averaging on the interval

Proposition 4.2. For g € H,,

1
(Pl = = 3 (e,
gp(n) re(Z/nZ)* ( )

4.3 Action on eigenfunctions

Lemma 4.3. For g, (z) = 2%, Plg, = c;((:)) gr, Where c,, (k) is the Ramanujan sum.

Lemma 4.4. For fixed k € 7, lim,, . fp"(—(n’“)) = k.0
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5 Domain characterisation via averaging
Theorem 5.1. For g € D(H;) where g(z) = > kez axx®, we have

lim PT{g = ag in Hiy.

n—oo

6 Heat kernel and zeta connections
6.1 Heat kernels
Theorem 6.1. Tr(e—tﬁS) = Tr(e—tﬁf) =Sz e ™ = 0(t).

6.2 Mellin transform and zeta function

Theorem 6.2. For Re(s) > 1,

T (5)C(25) = % /0 S0 - 1)158/2%

7 Conclusion

We establish unitary equivalence between the circle Laplacian and the compactified
Berry-Keating operator. The domain is specified via pullback, and ¢(n)-averaging provides
an arithmetic bridge between rotations and dilations.
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