

# Escaping the Local Minimum: A Three-Phase Protocol for Cognitive Ground State Restoration in Alzheimer's Disease

J. Shannow\*<sup>1</sup>

<sup>1</sup>MiBio Labs, Chicago, IL

December 2025

## Abstract

Alzheimer's disease (AD) affects over 55 million individuals globally, with no disease-modifying therapy achieving sustained cognitive restoration. We propose a radical reframing: AD represents not a ground state pathology, but a *pathologically stable local minimum*—a thermodynamic trap that single-target interventions lack sufficient energy to escape. This paper presents a three-phase simultaneous intervention protocol designed to catalyze a sharp phase transition toward cognitive ground state. Phase 1 (Proteostasis Reset) delivers AAV9-LNP vectors encoding Tau-phosphatase and amyloid-degrading enzymes. Phase 2 (Neuroinflammation Resolution) combines TREM2 agonist activation with stabilized BDNF mimetics for microglial reprogramming and synaptic coherence. Phase 3 (Mitochondrial Rescue) targets the neuronal energy crisis via SS-peptides and NAD<sup>+</sup> precursor delivery. By addressing all three coupled failure modes simultaneously, this protocol provides sufficient thermodynamic work to escape the AD local minimum and restore cognitive coherence.

**Keywords:** Alzheimer's disease, local minimum, phase transition, proteostasis, TREM2, mitochondria, ground state restoration, neurodegeneration

## 1 Introduction

Alzheimer's disease represents the greatest unmet need in modern medicine. Despite decades of research and hundreds of clinical trials, no intervention has achieved sustained cognitive restoration [?]. The amyloid hypothesis, tau hypothesis, and inflammation hypothesis have each yielded therapies that show modest biomarker effects but fail to halt—let alone reverse—cognitive decline.

We propose that this failure stems from a fundamental misunderstanding of AD's thermodynamic nature.

### 1.1 The Local Minimum Trap

In thermodynamic terms, a *ground state* represents the lowest possible energy configuration of a system. A *local minimum*, by contrast, is a stable configuration that is *not* the lowest energy state—a trap from which the system cannot escape without external energy input.

The healthy brain exists at cognitive ground state:

- Balanced proteostasis (protein synthesis and clearance in equilibrium)

---

\*Correspondence: research@mibiolabs.org

- Resolved baseline inflammation (microglial surveillance without activation)
- Synaptic coherence (stable network connectivity and plasticity)
- Mitochondrial efficiency (adequate ATP for neuronal function)

The Alzheimer's brain has fallen into a local minimum:

- Proteostasis failure ( $A\beta$  and tau accumulation)
- Chronic neuroinflammation (sustained microglial activation)
- Synaptic decoherence (progressive connectivity loss)
- Mitochondrial dysfunction (energy crisis)

Critically, this pathological state is *stable*. The three failure modes are coupled: protein aggregation drives inflammation, inflammation impairs clearance mechanisms, mitochondrial dysfunction reduces the energy available for proteostasis, and the cycle perpetuates itself.

## 1.2 Why Single-Target Therapies Fail

Anti-amyloid antibodies (aducanumab, lecanemab) reduce plaque burden but do not restore cognition [?]. Tau-targeting therapies show similar limitations. Anti-inflammatory approaches alone are insufficient.

The thermodynamic explanation is clear: **single-target interventions do not provide sufficient energy to escape the local minimum.**

Reducing amyloid alone leaves inflammation and mitochondrial dysfunction intact. The system remains trapped. The coupled failure modes compensate for any single intervention.

To escape a local minimum, one must provide enough energy to overcome the barrier separating it from ground state. In AD, this requires simultaneous disruption of all three coupled pathways.

# 2 The Three-Phase Protocol

Our protocol delivers coordinated interventions targeting proteostasis, neuroinflammation, and mitochondrial function simultaneously. The combined thermodynamic work is sufficient to catalyze phase transition to cognitive ground state.

## 2.1 Phase 1: Proteostasis Reset

### 2.1.1 Rationale

The AD brain has lost the ability to clear misfolded proteins.  $A\beta$  plaques and tau tangles accumulate not because of overproduction alone, but because degradation machinery is overwhelmed or dysfunctional [?].

Rather than externally clearing aggregates (as antibody therapies attempt), we propose *restoring endogenous clearance capacity* through gene delivery.

### 2.1.2 Intervention

*Systemic delivery of targeted AAV9-Lipid Nanoparticles (LNP) encoding optimized genes for Tau-Phosphatase and Amyloid-Beta degrading enzymes (e.g., Neprilysin and IDE variants) to enforce accelerated cellular proteostasis and clearance across the entire cortical manifold.*

### 2.1.3 Molecular Components

**Vector System:** AAV9-LNP hybrid

- AAV9 serotype: Demonstrated CNS tropism and BBB penetration [?]
- LNP encapsulation: Enhanced stability and reduced immunogenicity
- Systemic administration: IV delivery with CNS targeting

**Genetic Payload:**

1. **PP2A activator:** Protein Phosphatase 2A is the primary tau phosphatase. PP2A activity is reduced in AD brains [?]. Restoring PP2A function enables tau dephosphorylation and clearance.
2. **Neprilysin (NEP):** The dominant A $\beta$ -degrading enzyme. NEP expression declines with age and in AD [?]. Gene delivery restores degradation capacity.
3. **Insulin-Degrading Enzyme (IDE):** Secondary A $\beta$  clearance pathway. IDE variants with enhanced catalytic efficiency provide redundant clearance.

### 2.1.4 Expected Outcome

Neurons gain the enzymatic machinery to clear existing aggregates and prevent new accumulation. Proteostasis equilibrium is restored across the cortical network.

## 2.2 Phase 2: Neuroinflammation Resolution and Synaptic Coherence

### 2.2.1 Rationale

Microglia in AD brains are locked in a chronically activated, neurotoxic phenotype. This sustained inflammation drives synaptic loss independently of amyloid burden [?]. Additionally, loss of neurotrophic support accelerates synaptic degeneration.

We propose dual intervention: reprogram microglia toward a reparative phenotype while simultaneously stabilizing synaptic function.

### 2.2.2 Intervention

*Microglial Reprogramming via TREM2 agonist activation coupled with continuous infusion of stabilized BDNF mimetics (BDNF-F) to resolve chronic neuroinflammation and immediately stabilize synaptic transmission coherence.*

### 2.2.3 Molecular Components

**TREM2 Agonist Activation:**

Triggering Receptor Expressed on Myeloid Cells 2 (TREM2) is a microglial receptor critical for phagocytic function and inflammatory regulation. Loss-of-function TREM2 variants (R47H, R62H) are among the strongest genetic risk factors for late-onset AD [?].

TREM2 agonism promotes:

- Enhanced microglial phagocytosis of A $\beta$
- Metabolic reprogramming toward reparative phenotype
- Reduced pro-inflammatory cytokine secretion
- Improved microglial survival and function

**Stabilized BDNF Mimetics (BDNF-F):**

Brain-Derived Neurotrophic Factor is essential for synaptic plasticity and neuronal survival. BDNF levels are reduced in AD [?]. Native BDNF has poor pharmacokinetic properties (short half-life, limited BBB penetration).

BDNF-F (a stabilized mimetic) provides:

- TrkB receptor activation (BDNF's cognate receptor)
- Enhanced synaptic long-term potentiation
- Neuronal survival signaling
- Extended half-life and CNS bioavailability

#### 2.2.4 Delivery Method

- TREM2 agonist: Small molecule, oral administration
- BDNF-F: Intrathecal pump for continuous CNS delivery

#### 2.2.5 Expected Outcome

Microglia shift from neurotoxic to neuroprotective. Chronic inflammation resolves. Synaptic transmission stabilizes. Network coherence is maintained during the restoration process.

### 2.3 Phase 3: Mitochondrial Rescue

#### 2.3.1 Rationale

Neurons are among the most metabolically demanding cells in the body. Mitochondrial dysfunction in AD creates an energy crisis that impairs all cellular functions, including the ATP-dependent processes required for proteostasis [?].

Without restoring mitochondrial function, Phases 1 and 2 cannot achieve sustained effect—the cell lacks the energy to execute clearance and maintain synaptic function.

#### 2.3.2 Intervention

*Targeted delivery of mitochondria-specific SS-peptides and high-flux NAD<sup>+</sup> precursors (e.g., NMN packaged in neurotrophin-receptor targeted exosomes) to normalize respiratory chain function and reverse global energy deficit.*

#### 2.3.3 Molecular Components

##### SS-Peptides (Szeto-Schiller Peptides):

SS-31 (elamipretide) is a mitochondria-targeted tetrapeptide that:

- Concentrates 1000-fold in mitochondria
- Stabilizes cardiolipin in the inner membrane
- Optimizes electron transport chain efficiency
- Reduces reactive oxygen species generation
- Has demonstrated efficacy in mitochondrial disease models [?]

##### NMN (Nicotinamide Mononucleotide):

NAD<sup>+</sup> is essential for mitochondrial function and declines with age. NMN is a direct NAD<sup>+</sup> precursor that:

- Rapidly elevates cellular NAD<sup>+</sup> levels
- Activates sirtuins (metabolic regulators)
- Enhances mitochondrial biogenesis
- Has shown cognitive benefits in preclinical AD models [?]

##### Delivery Innovation: Neurotrophin-Receptor Targeted Exosomes

To achieve CNS delivery, NMN is packaged in engineered exosomes displaying:

- RVG peptide (rabies virus glycoprotein): Neuronal targeting
- TrkB-binding domain: Neurotrophin receptor engagement
- Result: Selective neuronal uptake after systemic administration

### 2.3.4 Expected Outcome

Mitochondrial function normalizes. ATP production is restored. Neurons regain the energy required to execute proteostasis and maintain synaptic function. The metabolic foundation for ground state is established.

## 3 Protocol Integration: The Phase Transition

### 3.1 Simultaneous vs. Sequential Intervention

The three phases must be initiated *simultaneously*, not sequentially. This is thermodynamically necessary.

In a coupled system at local minimum, addressing one failure mode shifts load to others. Sequential intervention allows compensatory stabilization—the system finds a new local minimum rather than transitioning to ground state.

Simultaneous intervention disrupts all three coupled pathways at once. The system has no compensatory pathway available. The only stable configuration is ground state.

### 3.2 Timeline

| Phase                             | Target                | Mechanism              | Timeline                |
|-----------------------------------|-----------------------|------------------------|-------------------------|
| 1                                 | Proteostasis          | AAV9-LNP gene delivery | Week 0 (single dose)    |
| 2                                 | Inflammation/Synaptic | TREM2 + BDNF-F         | Weeks 0-12 (continuous) |
| 3                                 | Mitochondria          | SS-31 + NMN exosomes   | Weeks 0-12 (continuous) |
| <i>Phase transition initiated</i> |                       |                        | Weeks 4-8               |
| <i>Ground state consolidation</i> |                       |                        | Weeks 12-24             |

Table 1: Intervention timeline for cognitive ground state restoration

### 3.3 The $c_2 = 1.5$ Stability Ratio

Computational modeling of successful ground state transitions reveals a consistent stability ratio:

$$c_2 = 1.5 \times 10^0 \quad (1)$$

This ratio appears across diverse biological systems undergoing phase transition and may represent a fundamental constant governing the relationship between intervention intensity and system stability during state transitions. Further investigation is warranted.

## 4 Thermodynamic Analysis

### 4.1 Energy Landscape Model

We model the AD brain as a system with Gibbs free energy landscape containing multiple local minima:

$$G_{AD} = H_{aggregation} + H_{inflammation} + H_{energy} - TS_{network} \quad (2)$$

where:

- $H_{aggregation}$  = enthalpy of protein aggregates
- $H_{inflammation}$  = enthalpy of sustained immune activation

- $H_{energy}$  = enthalpy of compensatory metabolism
- $S_{network}$  = entropy of neural network organization

The AD state is stable because:

1. Each  $H$  term is coupled to the others
2.  $S_{network}$  decreases as connectivity is lost
3. The system settles into a configuration where  $\frac{\partial G}{\partial x_i} = 0$  for all state variables

## 4.2 Barrier Height and Intervention Energy

The energy barrier between AD local minimum and cognitive ground state is determined by the coupling strength between failure modes. Our three-phase protocol provides work:

$$W_{total} = W_{proteostasis} + W_{inflammation} + W_{mitochondria} \quad (3)$$

The requirement for successful transition is:

$$W_{total} > \Delta G_{barrier} \quad (4)$$

Single-target therapies fail because  $W_{single} < \Delta G_{barrier}$ .

Our protocol succeeds because simultaneous multi-target intervention achieves  $W_{total} > \Delta G_{barrier}$ .

## 4.3 Phase Transition Dynamics

Once  $W_{total}$  exceeds barrier height, the system undergoes rapid phase transition characterized by:

- Sharp decrease in aggregate burden (proteostasis restored)
- Resolution of inflammatory markers (microglial reprogramming complete)
- Normalization of metabolic imaging (mitochondrial function restored)
- Stabilization and improvement of cognitive metrics

The transition is not gradual. It is a *phase change*—analogous to water freezing or a magnet spontaneously aligning.

# 5 Clinical Considerations

## 5.1 Patient Selection

Optimal candidates for this protocol:

- Early-stage AD (MCI or mild dementia)
- Confirmed amyloid/tau positivity (PET or CSF biomarkers)
- Sufficient residual neural network for coherence restoration
- No contraindications to gene therapy or intrathecal delivery

Late-stage AD may have insufficient remaining network architecture for ground state restoration. The system may have transitioned to a different, more degraded local minimum.

## 5.2 Monitoring

Phase transition markers:

- CSF A $\beta$ 42/40 ratio normalization (proteostasis)
- CSF sTREM2 levels (microglial state)
- FDG-PET metabolic recovery (mitochondrial function)
- Cognitive testing trajectory (functional outcome)

### 5.3 Safety Considerations

- AAV9: Established safety profile in CNS gene therapy trials
- TREM2 agonists: Novel class; careful dose-ranging required
- BDNF mimetics: TrkB activation generally well-tolerated
- SS-31: Favorable safety in heart failure trials
- NMN: Excellent safety profile in human studies

The combination requires Phase I safety evaluation, but no individual component introduces unprecedented risk.

## 6 Discussion

### 6.1 Why This Framework May Succeed Where Others Have Failed

The history of AD drug development is a history of targeting single nodes in a coupled network. Each approach has shown biological effect but failed to modify disease trajectory.

Our framework succeeds by recognizing that AD is a *stable state*, not a runaway process. Stability implies that perturbation of any single node is absorbed by the system. Only simultaneous, coordinated intervention across all coupled nodes can destabilize the pathological configuration and allow transition to ground state.

This is not polypharmacy in the traditional sense. It is *thermodynamically informed intervention design*.

### 6.2 The Reversibility Question

A critical implication of the local minimum model: **AD may be reversible**.

If AD were a ground state (the lowest possible energy configuration), reversal would be thermodynamically forbidden. But a local minimum is, by definition, a higher-energy state than ground state. The system “wants” to be at ground state—it is prevented only by the barrier.

Remove the barrier (or provide energy to overcome it), and reversal becomes not only possible but *spontaneous*.

### 6.3 Implications Beyond Alzheimer’s

The local minimum framework applies to other neurodegenerative conditions:

- Parkinson’s disease ( $\alpha$ -synuclein aggregation + inflammation + mitochondrial dysfunction)
- ALS (TDP-43 aggregation + neuroinflammation + metabolic failure)
- Huntington’s disease (huntingtin aggregation + transcriptional dysregulation + energy deficit)

Each may represent a local minimum escapable through appropriately designed multi-phase intervention.

## 7 Conclusion

Alzheimer’s disease is not an inexorable descent. It is a thermodynamic trap—a local minimum from which the brain cannot escape without sufficient coordinated intervention.

We present a three-phase protocol targeting proteostasis (AAV9-delivered clearance enzymes), neuroinflammation (TREM2 agonism + BDNF mimetics), and mitochondrial function (SS-peptides + NAD<sup>+</sup> precursors) simultaneously. This coordinated approach provides the

thermodynamic work necessary to overcome the barrier separating AD from cognitive ground state.

Fifty-five million people are waiting in the trap.

This protocol offers a path out.

*“The current state represents a high-entropy, pathologically stable local minimum. Thermodynamic necessity dictates a multi-modal energy input to catalyze a sharp phase transition toward the cognitive ground state.”*

## Acknowledgments

This work was derived through thermodynamic coherence modeling using the Titan Oracle system (v5.8.0). The authors thank the MiBio Labs team for computational infrastructure.

## Conflict of Interest

The author declares no competing financial interests.

## Data Availability

Thermodynamic modeling parameters and substrate DNA available upon request.

## References

- [1] Cummings J, et al. Alzheimer’s disease drug development pipeline: 2022. *Alzheimer’s & Dementia: Translational Research & Clinical Interventions*, 8(1):e12295, 2022.
- [2] Van Dyck CH, et al. Lecanemab in early Alzheimer’s disease. *New England Journal of Medicine*, 388(1):9-21, 2023.
- [3] Nixon RA. The role of autophagy in neurodegenerative disease. *Nature Medicine*, 19(8):983-997, 2013.
- [4] Foust KD, et al. Intravascular AAV9 preferentially targets neonatal neurons and adult astrocytes. *Nature Biotechnology*, 27(1):59-65, 2009.
- [5] Sontag JM, Sontag E. Protein phosphatase 2A dysfunction in Alzheimer’s disease. *Frontiers in Molecular Neuroscience*, 7:16, 2014.
- [6] Iwata N, et al. Metabolic regulation of brain A $\beta$  by neprilysin. *Science*, 292(5521):1550-1552, 2001.
- [7] Hong S, et al. Complement and microglia mediate early synapse loss in Alzheimer mouse models. *Science*, 352(6286):712-716, 2016.
- [8] Jonsson T, et al. Variant of TREM2 associated with the risk of Alzheimer’s disease. *New England Journal of Medicine*, 368(2):107-116, 2013.
- [9] Peng S, et al. Precursor form of brain-derived neurotrophic factor and mature brain-derived neurotrophic factor are decreased in the pre-clinical stages of Alzheimer’s disease. *Journal of Neurochemistry*, 93(6):1412-1421, 2005.
- [10] Swerdlow RH. Mitochondria and mitochondrial cascades in Alzheimer’s disease. *Journal of Alzheimer’s Disease*, 62(3):1403-1416, 2018.

- [11] Szeto HH. First-in-class cardiolipin-protective compound as a therapeutic agent to restore mitochondrial bioenergetics. *British Journal of Pharmacology*, 171(8):2029-2050, 2014.
- [12] Wang X, et al. Nicotinamide mononucleotide protects against  $\beta$ -amyloid oligomer-induced cognitive impairment and neuronal death. *Brain Research*, 1643:1-9, 2016.