
Essential Search Algorithms:
Navigating the Digital Maze

Muthukrishnan

Copyright

Cover Image Copyright 2023 Muthukrishnan. All Rights Reserved

The triangle featured on the cover page is known as the Penrose Tri-
angle, also referred to as the impossible triangle. It is an optical illusion
that depicts a three-dimensional figure in the form of a triangular loop,
which, despite its appearance, cannot be constructed in a physical three-
dimensional space. It was created by a Swedish artist Oscar Reutersvärd
in the 1930s and was later brought to prominence by mathematician Roger
Penrose in the 1950s. Although the Penrose Triangle cannot be realized
as a physical object, it represents an intriguing example of how visual
perception can be deceived to see an ostensibly impossible form. It has
emerged as an iconic figure in the realm of optical illusions and is fre-
quently employed to demonstrate ideas related to paradoxes and the visual
perception in the fields of art and design.

Essential Search Algorithms: Navigating the Digital Maze
Copyright 2023 Muthukrishnan. All Rights Reserved

No part of this publicationmay be reproduced or transmitted in any form
whatsoever, electronic, or mechanical, including photocopying, recording,
or by any informational storage or retrieval systemwithout express written,
dated and signed permission from the author.

2

Preface

Ever wonder how Google finds your perfect search result in millisec-
onds? Or how your GPS maps the fastest route to your destination? It’s
all thanks to the clever search algorithms invented by great software
engineers who needed to solve some complex search problems.

Search algorithms are everywhere! From finding your friend’s
profile on Facebook to suggesting the best route on a map, these
algorithms are constantly sifting through mountains of data, searching
for what you’re looking for. Search is at the core of all these real-world
technology problems.

This book is your guide to essential search methods used across different
fields. I’ve carefully curated these algorithms from a vast collection,
selecting those that form the building blocks. Understanding and applying
these algorithms will provide you with the necessary baseline to explore
more complex ones. Plus, you might even be able to create your own
algorithm tailored to the problem you’re solving. Each section explains
the ideas clearly and includes Python code you can use in your projects.
All the code is free and available on my GitHub page under the MIT license.

By the end, you’ll have the skills to explore both simple and com-
plex decision-making. Whether it’s managing supply chains or designing
smart robots, these essential search methods will guide you through tough
challenges and help you discover solutions you didn’t know were there.

So, join me on a journey to understand how search works. Let’s get started!

Muthukrishnan
Bangalore, India
2023

3

For my parents, Amrita and Atharva

4

Table of contents

Introduction 17
Book Organization . 18
Code Samples . 19

Setting up the python enviroment 20
Online resources . 21

1. Time Complexity of Algorithms 22
1.1. Big O Notation . 22
1.2. Common Notations . 23
1.3. Calculating Time complexity 24
1.4. Demystifying Logarithmic Time complexity 26
1.5. Common Time Complexities 26
1.6. NP and P . 27
1.7. Bibliography . 28

I. Basic Search Algorithms 29

2. Linear search 30
2.1. How it works . 30
2.2. Implementation . 31
2.3. Time Complexity Analysis 32
2.4. Advantages . 32
2.5. Limitations . 32
2.6. Applications . 33
2.7. Bibliography . 33

3. Binary Search 34
3.1. How it works . 35
3.2. Implementation . 35
3.3. Time Complexity Analysis 37

5

3.4. Advantages . 37
3.5. Limitations . 37
3.6. Applications . 37
3.7. Bibliography . 38

4. Ternary Search 39
4.1. How it Works . 39
4.2. Implementation . 41
4.3. Time Complexity Analysis 42
4.4. Applications . 43
4.5. Bibliography . 43

5. Jump Search 44
5.1. How it Works . 45
5.2. Implementation . 46
5.3. Time Complexity Analysis 47
5.4. Advantages . 47
5.5. Limitations . 47
5.6. Applications . 47
5.7. Bibliography . 47

6. Indexed Sequential Search 48
6.1. How it works . 49
6.2. Implementation . 50
6.3. Time Complexity Analysis: 52
6.4. Advantages . 52
6.5. Limitations . 52
6.6. Applications . 52
6.7. Bibliography . 53

7. Interpolation Search 54
7.1. How it works . 55
7.2. Implementation . 56
7.3. Time Complexity Analysis 57
7.4. Advantages and Limitations 57
7.5. Applications . 58
7.6. Bibliography . 59

6

8. Exponential Search 60
8.1. How it works . 60
8.2. Implementation . 62
8.3. Time Complexity Analysis 63
8.4. Advantages . 63
8.5. Limitations . 64
8.6. Applications . 64
8.7. Bibliography . 65

9. Fibonacci Search 66
9.1. How it works . 66
9.2. Implementation . 69
9.3. Time Complexity Analysis: 71
9.4. Advantages . 72
9.5. Limitations . 72
9.6. Applications . 72
9.7. Bibliography . 72

II. Hash-Based Search 73

10. Basics 74
10.1. Hash table . 75
10.2. How Hashing Works . 75
10.3. Types of Hash Functions 76
10.4. Hash Collisions . 79
10.5. Bibliography . 80

11. Hash Table Search 82
11.1. How it works . 83
11.2. Implementation . 83
11.3. Time Complexity Analysis 85
11.4. Advantages . 85
11.5. Limitations . 85
11.6. Applications . 86
11.7. Bibliography . 86

12. Bloom Filter 87
12.1. How it Works . 88

7

12.2. Implementation . 89
12.3. Visualization . 91
12.4. Time complexity Analysis 93
12.5. Advantages . 94
12.6. Limitations . 94
12.7. Applications . 94
12.8. Bibliography . 95

13. Cuckoo Filter 96
13.1. Cuckoo hashing . 97
13.2. Cuckoo Filter implementation 102
13.3. Time complexity Analysis 106
13.4. Cuckoo filters vs Bloom Filters 108
13.5. Advantages: . 108
13.6. Limitations: . 109
13.7. Bibliography . 109

III. AI Search Algorithms 110

14. Hill Climbing Algorithm 111
14.1. How it works . 112
14.2. Implementation . 115
14.3. Variants of Hill Climbing Algorithm 117
14.4. Advantages . 118
14.5. Disadvantages . 118
14.6. Applications . 119
14.7. Bibliography . 119

15. Monte Carlo Tree Search (MCTS) 120
15.1. Playing Tic-Tac-Toe with Monte Carlo Tree Search 122
15.2. Implementation . 125
15.3. Visualization . 130
15.4. Advantages: . 132
15.5. Limitations: . 132
15.6. Applications . 133
15.7. Bibliography . 134

8

16. Simulated Annealing 135
16.1. How it works: . 135
16.2. The Traveling Salesman Problem (TSP) using Simulated

Annealing . 137
16.3. Simulated Annealing for TSP Problem: Step-by-Step Guide 138
16.4. Implementation . 140
16.5. Visualization . 143
16.6. Advantages: . 146
16.7. Limitations: . 147
16.8. Applications . 148
16.9. Bibliography . 149

17. Tabu search 150
17.1. Basic principle . 151
17.2. Components of TS . 151
17.3. How it works . 154
17.4. Implementation . 156
17.5. Visualization . 160
17.6. Advantages . 164
17.7. Limitations . 165
17.8. Applications . 166
17.9. Bibliography . 166

18. Branch and Bound Algorithms 167
18.1. Branch and Bound algorithm 168
18.2. How it works . 169
18.3. Implementation . 175
18.4. Advantages: . 181
18.5. Limitations: . 181
18.6. Applications . 182
18.7. Bibliography . 183

19. Beam search 184
19.1. How it works: . 185
19.2. Implementation . 185
19.3. Visualization . 188
19.4. Time Complexity Analysis 191
19.5. Advantages . 193
19.6. Limitations . 193

9

19.7. Applications . 193
19.8. Bibliography . 194

20. Iterative Deepening Depth-First Search (IDDFS) 196
20.1. How it works: . 197
20.2. Implementation . 198
20.3. Time Complexity Analysis 200
20.4. Advantages . 201
20.5. Limitations . 202
20.6. Applications . 202
20.7. Bibliography . 203

21. Ant Colony Optimization (ACO) 204
21.1. Explanation of Ant Colony Optimization 205
21.2. Implementation . 207
21.3. Visualization . 211
21.4. Advantages . 213
21.5. Limitations . 214
21.6. Applications . 214
21.7. Bibliography . 215

22. Nearest Neighbor Search 216
22.1. Formal Definition . 216
22.2. Approaches to Nearest Neighbor Search: 217
22.3. Curse of Dimensionality 227
22.4. Time complexity analysis 228
22.5. Advantages . 229
22.6. Limitations . 229
22.7. Applications . 230
22.8. Bibliography . 231

IV. Graph Search Algorithms 232

23. Basics 233
23.1. Graph Data structure . 233
23.2. Common Implementations 234
23.3. Types of Graph-based algorithms 238
23.4. Search Strategies: Uninformed and Informed Search 238

10

23.5. Bibliography . 240

24. Depth First Search (DFS) 241
24.1. How it Works . 242
24.2. Implementation . 244
24.3. Time Complexity Analysis: 246
24.4. Advantages . 246
24.5. Limitations . 247
24.6. Choosing between DFS and BFS 247
24.7. Applications . 248
24.8. Bibliography . 250

25. Breadth first search (BFS) 251
25.1. How it works . 252
25.2. Implementation . 253
25.3. Visualization . 255
25.4. Time Complexity Analysis 257
25.5. Breadth-First Search vs. Depth-First Search: 257
25.6. Advantages . 259
25.7. Limitations . 259
25.8. Applications . 260
25.9. Bibliography . 262

26. Dijkstra’s algorithm 263
26.1. A brief history . 263
26.2. How it Works . 264
26.3. Implementation . 265
26.4. Visualization . 268
26.5. Time Complexity Analysis 278
26.6. Advantages . 279
26.7. Limitations . 279
26.8. Applications . 280
26.9. Bibliography . 281

27. Uniform Cost Search 282
27.1. How it Works . 282
27.2. Implementation . 283
27.3. Visualization . 287
27.4. Time Complexity Analysis 291

11

27.5. Advantages . 292
27.6. Disadvantages . 292
27.7. Applications . 293
27.8. Bibliography . 293

28. Greedy Best-First Search 294
28.1. How it works . 295
28.2. Implementation . 296
28.3. Visualization . 298
28.4. Time Complexity Analysis 300
28.5. Advantages . 301
28.6. Limitations . 301
28.7. Applications . 302
28.8. Bibliography . 303

29. A* Search Algorithm 304
29.1. Heuristics and Cost function 304
29.2. How it works . 306
29.3. Implementation . 308
29.4. Visualization . 312
29.5. Time Complexity Analysis: 313
29.6. Advantages . 314
29.7. Limitations . 314
29.8. Applications: . 315
29.9. Bibliography . 315

30. B* Search Algorithm 316
30.1. How it works: . 316
30.2. Implementation . 318
30.3. Bibliography . 320

31. Bidirectional Search 321
31.1. How it Works . 322
31.2. Implementation . 322
31.3. Time Complexity Analysis 324
31.4. Advantages . 324
31.5. Limitations . 325
31.6. Applications . 326
31.7. Bibliography . 327

12

32. Kruskal’s Algorithm 328
32.1. Minimal Spanning Tree . 328
32.2. Disjoint Set Data structure 329
32.3. The Kruskal Algorithm . 330
32.4. Implementation . 331
32.5. Visualization . 332
32.6. Time complexity analysis 336
32.7. Advantages . 336
32.8. Limitations . 337
32.9. Algorithms . 337
32.10.Bibliography . 338

33. Prim’s Algorithm 339
33.1. How it works . 339
33.2. Implementation . 340
33.3. Visualization . 342
33.4. Time Complexity Analysis 344
33.5. Advantages . 345
33.6. Limitations . 345
33.7. Applications . 346
33.8. Bibliography . 346

34. Floyd-Warshall algorithm 347
34.1. How it works . 347
34.2. Implementation . 351
34.3. Time Complexity Analysis 352
34.4. Applications . 353
34.5. Bibliography . 354

35. The Bellman-Ford algorithm 355
35.1. How it works: . 356
35.2. Implementation . 360
35.3. Time Complexity Analysis 362
35.4. Applications . 362
35.5. Bibliography . 362

13

V. Text and String Matching Algorithms 363

36. Suffix Array 364
36.1. How it works . 364
36.2. Implementation . 365
36.3. Visualization . 366
36.4. Time complexity . 369
36.5. Advantages . 370
36.6. Limitations . 370
36.7. Applications . 371
36.8. Bibliography . 371

37. Boyer-Moore Algorithm 373
37.1. How it works . 373
37.2. Implementation . 379
37.3. Visualization . 381
37.4. Advantages . 383
37.5. Limitations . 384
37.6. Applications . 384
37.7. Bibliography . 384

38. Knuth-Morris-Pratt (KMP) Algorithm 385
38.1. How it works . 385
38.2. Implementation . 389
38.3. Visualization . 391
38.4. Time Complexity Analysis 393
38.5. Advantages . 394
38.6. Limitations . 394
38.7. Applications . 395
38.8. Bibliography . 395

39. Rabin-Karp Algorithm 396
39.1. How it works . 396
39.2. Implementation . 399
39.3. Visualization . 401
39.4. Time complexity . 401
39.5. Advantages . 402
39.6. Limitations . 403
39.7. Bibliography . 404

14

40. Levenshtein distance 405
40.1. Calculating Levenshtein Distance 405
40.2. Representation of Levenshtein Distance 406
40.3. Implementation . 406
40.4. Visualization . 407
40.5. How is LD used in search? 409
40.6. Program for approximate string matching using leven-

shtein distance . 410
40.7. Advantages . 412
40.8. Limitations . 412
40.9. Applications . 413
40.10.Bibliography . 414

VI. Data Structures for Search 415

41. Arrays 416
41.1. Arrays in Python . 416
41.2. Types of Arrays . 419
41.3. Applications . 419

42. Linked Lists 421
42.1. Implementing a linked list in Python 421
42.2. Operations on linked lists 422
42.3. Advantages of linked lists 422
42.4. Disadvantages . 422

43. Queues 423
43.1. Working with Queues . 423
43.2. Applications . 424

44. Heaps 426
44.1. Types of heaps . 426
44.2. Working with Heap . 427
44.3. Heaps vs. arrays . 428
44.4. Applications . 428

45. Stack 429
45.1. Working with Stack . 429

15

45.2. Applications . 430

46. Trie search 432
46.1. How it works . 433
46.2. Implementation . 437
46.3. Time Complexity Analysis 439
46.4. Advantages . 439
46.5. Limitations . 440
46.6. Applications . 440

47. Ternary Search Tree (TST) 442
47.1. Structure and Representation of Ternary Search Tree . . . 442
47.2. Operations on Ternary Search Tree 443
47.3. Implementation . 445
47.4. Visualization . 446
47.5. How is a TST more space efficient than Trie? 451
47.6. Bibliography . 453

VII. Appendix 454

48. Python: Quick-Start Guide 455
48.1. Overview . 455
48.2. Language Basics . 458
48.3. Further Reading . 466

49. Acknowledgements 468

16

Introduction

Welcome to Essential Search Algorithms. As a software engineer with over
15 years of writing code and building complex software, I’ve amassed a
vast library of algorithms books. Many of these delve into algorithms
in a textbook-theoretical style, making the concepts overly complex and
challenging to grasp. This often required me to read even more books to
understand a single algorithm. It was then that I began developing my
own personal reference guide: a concise and visually structured collection
of essential algorithm elements. These notes initially served as a personal
reference, but as they grew, I realized the need wasn’t mine alone. Many
fellow software engineers needed the same clarity. So, I started writing
this guidebook for a wider audience, focusing on the essentials and leaving
the textbook jargon behind.

This book stands out from other search algorithm books in several key
ways:

1. Clear and concise explanations: Complex concepts are explained
in a clear and concise manner without complex mathematical nota-
tions, avoiding textbook-theoretical style, making the book accessi-
ble to a wide audience, from beginners to experienced programmers.

2. Visualizations and Working code: This book is packed with vi-
sualizations that make even complex algorithms easy to understand
and remember. Additionally, all algorithms include a functional
Python code, giving readers a firsthand understanding of their func-
tionality and inner workings.

3. Suitable for Self-Study or Classroom Use: The book is suitable
for both self-study and classroom use. It also serves as an excellent
resource for instructors teaching courses on search algorithms.

4. Real world Applications: Knowing how search algorithms are
used in real-world applications, when learning them, makes you

17

better equipped to pick the right one for solving problems. That’s
why each algorithm comes with a curated list of real-world uses.

5. Bibliography: This book wouldn’t have been possible without the
incredible work of researchers, writers, and engineers who gener-
ously shared their knowledge with the world. Each algorithm in
this book has a dedicated bibliography, which I personally consulted
while writing that chapter. This section not only includes relevant
books and additional reading materials but also, in some chapters,
the original papers authored by the algorithms’ creators. This inclu-
sion allows readers to delve deeper into the origins, intricacies, and
advanced applications of each algorithm. It provides a comprehen-
sive understanding and facilitates further exploration beyond the
book’s scope.

Whether you’re an experienced programmer or a student seeking a
deeper understanding of essential search algorithms, this book will serve
as your go-to guide.

Book Organization

This book is organized into six parts:
1. Basic Search Algorithms
This introductory section delves into the fundamental search algorithms

in computer science that are like the base for understanding more com-
plicated ways of searching and moving through information. Once you
understand these simple search algorithms well, you’ll have a strong base
to understand fancier ways of searching and working with data.
2. Hash-Based Search Algorithms
This part shows how hash-based search algorithms work using special

functions called hash functions to link keys or IDs to exact spots in a data
structure, usually a hash table.
3. Graph Search Algorithms
This part covers graph-based search algorithms, which are essential for

navigating and analyzing interconnected data structures like graphs or
networks.
4. Text and String Matching Algorithms
This part covers Text and String Matching Algorithms, which are funda-

mental techniques used to identify patterns or specific sequences within

18

text or data strings. These algorithms excel at detecting patterns, identify-
ing specific substrings, and locating occurrences of target text within larger
bodies of text, proving invaluable for tasks such as plagiarism detection,
information retrieval, and natural language processing.
5. AI Search Algorithms
This part delves into AI Search Algorithms, fundamental tools used

in artificial intelligence to find solutions or make decisions in various
problems by exploring possible paths or states.
6. Data Structures for Search
This part looks at how data structures and search algorithms work

together. Well-thought-out data structures can boost how well searches
work. Whether it’s arrays or tries, each type of data structure has special
features that can make searches faster and more efficient.

Code Samples

Every code example in this book is written in Python. I’ve been writing
code in Java, JavaScript, C#, and Python for many years, and I think Python
is really versatile and easy to understand. Good Python code is clear and
easy to read because it’s written in an expressive way. Even if you’re new
to Python, you can learn the basics in a few hours and begin writing and
understanding code.

The provided sample codes demonstrate the functionality of each tech-
nique, enabling readers to engage with and fully comprehend the method-
ology. The sample code is intentionally minimal to keep the book focused
more on the concept than the implementation, providing ample room
for extension and optimization. For those eager to dive deeper, the com-
plete source code for all algorithms featured in this book is accessible on
my GitHub repository at https://github.com/muthuspark/algorithms. It’s
worth noting that all algorithm implementations were rigorously tested
with Python 3.

19

Setting up the python enviroment

To get started, follow these steps to install Python on Windows, macOS,
and Linux operating systems.

Python Installation on macOS:

1. Check Pre-installed Python: macOS often comes with a pre-
installed version of Python. Open Terminal and enter python3 --

version to check if Python 3 is already available.

2. Homebrew Installation (Optional): If you prefer package man-
agers, you can install Python using Homebrew. Run the command:
brew install python.

3. Official Python Installer: Download the latest version of Python
from the official Python website . Run the installer, follow the
prompts, and Python will be ready for action.

Python Installation on Linux:

1. Package Manager Installation: Linux distributions usually of-
fer Python in their package managers. For Debian-based systems
like Ubuntu, use: sudo apt-get install python3. For Red Hat-based
systems, try: sudo yum install python3.

2. Python.org Installation: Alternatively, you can install Python
directly from the source. Visit the official website to download the
source code. Extract it, navigate to the directory, and execute the
commands: ./configure, make, and sudo make altinstall.

Python Installation on Windows:

1. Official Python Installer: Download the Windows installer from
the official Python website . Run the installer, ensure the “Add
Python X.Y to PATH” option is checked, and click “Install Now.”

20

2. Windows Store Installation (Optional): If you’re using Windows
10, Python is available through the Microsoft Store. Search for
“Python” in the Store and install the version you need.

3. Anaconda Distribution (Optional): For data science and scientific
computing, the Anaconda distribution Anaconda Distribution is an
excellent choice. Download the installer, run it, and follow the
installation instructions.

Verifying the Installation:

To verify that Python is successfully installed, open your terminal (or
command prompt) and enter python3 --version (macOS and Linux) or python

--version (Windows). You should see the installed Python version dis-
played.

Online resources

• Python Documentation

21

https://www.anaconda.com/products/distribution
https://docs.python.org/3/

1. Time Complexity of Algorithms

Time complexity, in computer science, is a way of measuring how long
it takes an algorithm to run as the size of the input increases. It’s like a
speedometer for algorithms, telling you how fast they can process infor-
mation based on how much information they need to handle.

Imagine you have two different algorithms for searching a library for
a specific book. One method, known as linear search, involves checking
each book one by one from the first shelf to the last. In another method,
knpws as Indexed Sequential Search, you quickly navigate to the section
or shelf where the book is likely to be located and then find the book in
that section. As you can imagine, the latter method, Indexed Sequential
Search, would be significantly faster, especially as the library grows larger
and the books increase.

Time complexity helps us understand this difference by analyzing how
the running time of an algorithm changes with the input size. One of
the most commonly used notation for denoting the time complexity of an
algorithm or a part of code is the Big-O notation.

1.1. Big O Notation

Using Big O notation, we express the growth rate of an algorithm’s runtime
in terms of a function of the input size. The “O” in Big O stands for “order
of,” and the notation is followed by a mathematical function that represents
the algorithm’s behavior as the input size approaches infinity. Think of
Big O as a way to describe the upper bound of an algorithm’s growth rate.
It provides a high-level view of how an algorithm’s efficiency scales with
input size, abstracting away constant factors and lower-order terms.

For example, an algorithm with a time complexity of 𝑂(𝑛) means that
its runtime grows linearly with the input size, while 𝑂(𝑛2) suggests a
quadratic relationship. The “n” in these notations represents the input
size.

22

1.2. Common Notations

Notation Meaning Interpretation

Big O (O) Upper bound on the
worst-case execution
time

The algorithm’s
execution time will
not grow faster than
the specified function
as the input size
increases.

Theta (Θ) Average-case
execution time

The algorithm’s
execution time will be
exactly proportional to
the specified function
as the input size
increases.

Omega (Ω) Lower bound on the
worst-case execution
time

The algorithm’s
execution time will
not grow slower than
the specified function
as the input size
increases.

Little Oh (o) Asymptotic upper
bound on the
execution time

The algorithm’s
execution time will
eventually be less than
the specified function
as the input size
increases.

Little Omega (ω) Asymptotic lower
bound on the
execution time

The algorithm’s
execution time will
eventually be greater
than the specified
function as the input
size increases.

23

1.3. Calculating Time complexity

Calculating time complexity involves identifying the dominant operations
in the algorithm and determining how their execution time scales with the
input size.

1.3.1. Calculating time complexity of Linear Search

def linear_search(arr, target):

for i in range(len(arr)):

if arr[i] == target:

return i

return -1

1. Identify the basic operations: Break down the algorithm into
basic operations, such as assignments, comparisons, function calls,
and loop iterations. The basic operations are assignments (𝑖 = 0),
comparisons (𝑎𝑟𝑟[𝑖] == 𝑡𝑎𝑟𝑔𝑒𝑡), and function calls (return i or return

-1).

2. Count the operations: Determine the number of times each basic
operation is executed. This may involve using variables to represent
the input size and the number of iterations. The for loop iterates
len(arr) times, performing one assignment and one comparison per
iteration. The return statement is executed either once (if the target
is found) or not at all. The other operations are constant and can be
ignored.

3. Simplify expression: 𝑂(𝑛)

4. Use Big O notation: The time complexity of linear search is 𝑂(𝑛),
where n is the input size (𝑙𝑒𝑛(𝑎𝑟𝑟)).

1.3.2. Calculating time complexity of Binary Search

Binary search is a search algorithm that works by repeatedly dividing the
input into half and checking which half contains the target value. This
process is repeated until the target value is found or it is determined that
the value is not present in the input.

24

def binary_search(arr, target):

low = 0

high = len(arr) - 1

while low <= high:

mid = (low + high) // 2

if arr[mid] == target:

return mid

elif arr[mid] < target:

low = mid + 1

else:

high = mid - 1

return -1

Here is how to calculate the time complexity of binary search:

1. Identify the basic operations: The basic operations are assign-
ments (low = 0, high = len(arr) - 1, mid = (low + high) // 2, return

mid), comparisons (arr[mid] == target, arr[mid] < target, arr[mid] >

target), and function calls (len(arr)).

2. Count operations: The number of comparisons is equal to the
number of times the while loop iterates. In the worst case, the loop
iterates until the target value is found, which means that the number
of comparisons is 𝑙𝑜𝑔2(𝑛). The other operations are constant and
can be ignored.

3. Simplify expression: 𝑂(𝑙𝑜𝑔(𝑛))

4. Use Big O notation: 𝑂(𝑙𝑜𝑔(𝑛))

Therefore, the time complexity of binary search is 𝑂(𝑙𝑜𝑔(𝑛)). This means
that the number of operations required to perform the search will grow
logarithmically with the input size.

25

1.4. Demystifying Logarithmic Time complexity

The mathematical notation “log(n)” (where n is any positive real number)
represents the logarithm of 𝑛 to the base 2. In simpler terms, it indicates
the power to which 2 must be raised to obtain the value 𝑛.

For instance, 𝑙𝑜𝑔2(16) = 4 since 2 raised to the power of 4 equals 16.
Similarly, 𝑙𝑜𝑔2(8) = 3 as 2 raised to the power of 3 equals 8.

The logarithm of 𝑛 to the base 2, denoted as 𝑙𝑜𝑔2(𝑛), is commonly used
in computer science to represent the number of times a value can be
divided by 2 before reaching 1. As the input size increases, the number of
operations required to execute the algorithm increases at a much slower
rate compared to linear or exponential growth. This makes logarithmic
time algorithms highly efficient for dealing with large datasets.

1.5. Common Time Complexities

1. 𝑂(1) - Constant Time: This is the best-case scenario. The algo-
rithm’s runtime remains constant, regardless of the input size.

2. 𝑂(𝑙𝑜𝑔(𝑛)) - Logarithmic Time: Algorithms with logarithmic time
complexity often divide the problem space in half with each step
(iteration). These algorithms are incredibly efficient for large data
sets.

3. 𝑂(𝑛) - Linear Time: The algorithm’s runtime grows linearly with

26

the input size. For example, if you double the input, the algorithm
takes roughly double the time to complete.

4. 𝑂(𝑛 ∗ 𝑙𝑜𝑔(𝑛)) - Linearithmic Time: This complexity is common
in efficient sorting algorithms like Merge Sort and Quick Sort. It’s
faster than quadratic time but not as fast as linear time.

5. 𝑂(𝑛2) - Quadratic Time: Algorithms with quadratic time complex-
ity become slow as the input size increases. Nested loops are a
common cause of quadratic time.

6. 𝑂(2𝑛) - Exponential Time: The algorithm’s runtime grows rapidly
with the input size. It’s common in brute-force approaches and
should be avoided for large inputs.

1.6. NP and P

In computational complexity theory, the classes 𝑁𝑃 and 𝑃 play a central
role in understanding the difficulty of problems that can be solved by
computers.
P (Polynomial Time)
The class 𝑃, which stands for polynomial time, includes all problems

that can be solved by a deterministic algorithm in an amount of time that
is polynomial in the size of the input. This means that the number of
operations required to solve the problem grows at a reasonable rate as the
input size increases. For instance, sorting a list of numbers is considered a
problem in class 𝑃.
NP (Nondeterministic Polynomial Time)
The class 𝑁𝑃, which stands for nondeterministic polynomial time, in-

cludes all problems for which a solution can be verified in polynomial time,
given the solution itself. This means that while it may be difficult to find
the solution, it can be quickly checked for correctness. An example of an
𝑁𝑃 − 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 problem is the Boolean satisfiability problem (SAT), where
the goal is to determine whether a given Boolean formula has a satisfying
assignment.
NP-Completeness
𝑁𝑃−𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 problems represent a subset of𝑁𝑃 problems with a unique

property: any problem in 𝑁𝑃 can be reduced to an 𝑁𝑃 − 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 problem
in polynomial time. This means that if an efficient algorithm could be

27

found to solve any 𝑁𝑃 − 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 problem, it could be used to solve all
other problems in 𝑁𝑃 efficiently as well.

1.7. Bibliography

• Donald E. Knuth The art of computer programming, volume
1: Fundamental algorithms (Addison-Wesley 3rd) (1997)

• Donald E. Knuth The art of computer programming, volume
2: Semi-numerical algorithms (Addison-Wesley 3rd) (1997)

• Donald E. Knuth The art of computer programming, volume
3: Sorting and searching (Addison-Wesley 1st) (1973)

• Donald E. Knuth The art of computer programming, vol-
ume 4A: Combinatorial algorithms, part 1 (Addison-Wesley 1st)
(2011)

28

Part I.

Basic Search Algorithms

29

2. Linear search

The linear search algorithm, also known as sequential search, is a straight-
forward method for finding a specific target value within a collection of
elements, such as an array or a list.

It involves iterating through each element in the collection one by one
and comparing it to the target value. If a match is found, the algorithm
returns the index or position of the matching element; if no match is found
after checking all elements, the algorithm indicates that the target value
is not present in the collection. Linear search is simple to implement but
may become inefficient for large datasets, as it has a time complexity of
𝑂(𝑛), where n is the number of elements in the collection.

2.1. How it works

To demonstrate the beauty of its simplicity, let’s go through the steps of
Linear Search:

30

• Start from the first element of the collection.
• Compare the target element with the current element.
• If the target element is found, return its index (or position).
• If not found, move to the next element in the collection and repeat
the process.

• Continue until the target element is found, or the end of the collec-
tion is reached.

2.2. Implementation

def linear_search(target, lst):

Iterate over the elements in the list

and keep track of the index

for index, element in enumerate(lst):

Check if the current element is

equal to the target element

if element == target:

If a match is found, return

the index

return index

31

If the target element is not found,

return -1

return -1

Example usage:

my_list = [10, 7, 15, 22, 9, 13, 5]

target_element = 9

result = linear_search(target_element, my_list)

if result != -1:

print(f"Element found at : {result}")

else:

print(f"Element not found")

2.3. Time Complexity Analysis

The time complexity of Linear Search is 𝑂(𝑛), where 𝑛 is the size of the
collection. In the worst-case scenario, the algorithm may have to traverse
the entire collection to find the target element. Therefore, as the collection
grows, the search time increases linearly.

2.4. Advantages

• Simplicity: Pretty straightforward to implement.
• Applicability to Small Lists: In situations where the dataset is
relatively small or unsorted, linear search can be efficient. Its sim-
plicity makes it viable for small-scale searches without the need for
a sorted dataset or additional complex data structures.

2.5. Limitations

• Inefficiency with Large Datasets: As you would have already
guesses by looking at the time complexity, with a large number of
elements, the time taken to search for a specific value grows linearly
with the size of the list. For large datasets, more efficient algorithms
like binary search or hash tables are preferred.

32

2.6. Applications

• Checking for Availability in Databases: Linear search is used in
smaller databases or datasets to check for the existence or availability
of specific items. For instance, in a library database, when a book’s
ISBN or title is entered, a linear search might be used to verify its
availability by scanning through the database entries.

• Searching for Files: In file systems, especially when dealing with
relatively small directories or file listings, linear search is employed
to locate files. For instance, when a user searches for a file by name
in a directory on a computer, a linear search scans through the
directory entries until it finds a matching file name.

2.7. Bibliography

• Donald E. Knuth The art of computer programming, volume
3: (2nd ed.) sorting and searching (Addison Wesley Longman
Publishing Co., Inc.) (1998)

33

3. Binary Search

Binary search is a widely-used search algorithm that efficiently locates a
specific target element within a sorted array or list. It works by repeatedly
dividing the search space in half and comparing the middle element to the
target. For example in a phone book, to find “John”, you don’t start from
A, instead you’d begin by opening the book in the middle. If it is past J,
you know to only search right half. This repeats, quickly narrowing on
John’s location by repeatedly halving search space.

If the middle element is equal to the target, the search is successful. If
the target is less than the middle element, the search continues in the lower
half of the remaining space; if the target is greater, the search continues
in the upper half. This process eliminates half of the remaining elements
with each step, leading to a significant reduction in search time compared
to linear search algorithms. Binary search is particularly effective for
large datasets and is characterized by its logarithmic time complexity of
𝑂(𝑙𝑜𝑔(𝑛)), where 𝑛 is the number of elements in the array.

34

3.1. How it works

To perform a binary search, the list must be sorted in ascending or de-
scending order. The algorithm works as follows:

• Set two pointers, left and right, to the first and last indices of the
list, respectively.

• Calculate the mid index as the average of left and right.
• Compare the target element with the element at the mid index.
• If the target matches the element at mid, the search is successful, and
we return the index.

• If the target is less than the element at mid, the target must be in the
left half, so set right to mid - 1.

• If the target is greater than the element at mid, the target must be in
the right half, so set left to mid + 1.

• Repeat the above steps until the target is found or left becomes
greater than right, indicating the element is not present in the list.

3.2. Implementation

def binary_search(sorted_list, target):

left = 0

right = len(sorted_list) - 1

while left <= right:

35

mid = (left + right) // 2

if sorted_list[mid] == target:

Check if the item at the middle

index of the search space is equal to the

target item. If it is, then the target item

has been found, and the function returns

the middle index.

return mid

elif sorted_list[mid] < target:

Checks if the item at the middle index of

the search space is less than the target item.

If it is, then the target item must be in

the 1right half of the search space, so the

left endpoint is updated to be the middle index plus

one.↪

left = mid + 1

else:

checks if the item at the middle index of

the search space is greater than the target

item. If it is, then the target item must be in

the left half of the search space, so the

right endpoint is updated to be the middle

index minus one.

right = mid - 1

If the loop exits without finding

the target item, then the function returns -1,

which indicates that the target item is not in the list.

return -1

Example usage:

sorted_list = [1, 3, 5, 7, 9, 11, 13, 15]

target = 13

result = binary_search(sorted_list, target)

if result != -1:

print(f"Element found at : {result}")

else:

36

print(f"Element not found")

3.3. Time Complexity Analysis

Binary Search’s time complexity is 𝑂(𝑙𝑜𝑔(𝑛)), where 𝑛 is the number of
elements in the list. Each step reduces the search space by half, leading
to a logarithmic time complexity. This makes binary search incredibly
efficient, especially for large datasets, as it can quickly locate the target
element in just a few comparisons.

3.4. Advantages

• Very efficient for large datasets due to its logarithmic time complex-
ity.

• It guarantees the target element’s position will be found in a minimal
number of comparisons.

3.5. Limitations

• Binary Search requires a sorted list, which can be a limitation if the
data is not initially sorted.

3.6. Applications

• Symbol Tables and Dictionaries: Imagine you have a big dictio-
nary with lots of words. If you’re looking for a word like “Genesis,”
checking each word one by one takes a lot of time. Instead, you open
the dictionary in the middle and see a word. If “Genesis” should
come before that word, you ignore all the words after it. If it should
come after, you ignore all the words before it. Then, you keep doing
this until you find the word “Genesis.” It’s like a game of guessing
where the word might be in the dictionary, and you get closer each
time you check.

• Finding specific data in databases: Databases store massive
amounts of data, and binary search is employed to efficiently retrieve
specific information. Whether searching for a customer’s address or

37

a product’s price, binary search allows for rapid access to the desired
data within large databases.

3.7. Bibliography

• Donald E. Knuth The art of computer programming, volume 3: (2nd
ed.) sorting and searching (Addison Wesley Longman Publishing
Co., Inc.) (1998)

• J. Bentley Programming pearls (Pearson Education) (2016)
• T. H. Cormen et al. Introduction to algorithms, third edition
(MIT Press) (2009)

38

4. Ternary Search

Ternary search is a search algorithm that efficiently finds the position of
a specific target value within a sorted dataset by repeatedly dividing the
search range into three parts. The overall functioning of the algorithm
is very similar to binary search, differing only in the number of divisions
made in each iteration. In binary search, it is two, whereas in ternary
search, it is three.

In Ternary search we compare the target value with elements at two
positions within the dataset to determine if the target lies in the left or right
portion of the current range. This process is repeated, narrowing down
the search space to a smaller segment with each step. Ternary search is
particularly effective when the dataset is known to be unimodal, meaning
it has a single peak or trough. It has a time complexity of approximately
𝑂(𝑙𝑜𝑔3𝑛), where 𝑛 is the size of the dataset, making it more efficient than
linear search but slightly less efficient than binary search.

4.1. How it Works

• Begin with an initial interval [𝑙𝑒𝑓 𝑡, 𝑟 𝑖𝑔ℎ𝑡], where 𝑙𝑒𝑓 𝑡 and 𝑟 𝑖𝑔ℎ𝑡 are
the lower and upper bounds of the search space, respectively.

• While the interval 𝑙𝑒𝑓 𝑡 is smaller than or equal to 𝑟 𝑖𝑔ℎ𝑡:

– Calculate two points, 𝑚𝑖𝑑1 and 𝑚𝑖𝑑2, dividing the interval into
three segments.

– Find the values at 𝑚𝑖𝑑1 and 𝑚𝑖𝑑2:

39

∗ If the value at 𝑚𝑖𝑑1 is greater, move the 𝑟 𝑖𝑔ℎ𝑡 boundary to
𝑚𝑖𝑑2.

∗ If the value at 𝑚𝑖𝑑2 is greater, move the 𝑙𝑒𝑓 𝑡 boundary to
𝑚𝑖𝑑1.

∗ Otherwise, the value likely lies between 𝑚𝑖𝑑1 and 𝑚𝑖𝑑2,
so update the interval to [𝑚𝑖𝑑1, 𝑚𝑖𝑑2].

Let’s take the following sorted array inwhichwe have to find the number
55.

[4, 16, 29, 36, 47, 55, 67, 88, 99, 101, 119, 124]

Initially 𝑙𝑒𝑓 𝑡 = 0, 𝑟 𝑖𝑔ℎ𝑡 = 𝑠𝑖𝑧𝑒 − 1, we calculate mid1 and mid2 using the
below formula.

𝑚𝑖𝑑1 = 𝑙𝑒𝑓 𝑡 +
𝑟 𝑖𝑔ℎ𝑡 − 𝑙𝑒𝑓 𝑡

3

𝑚𝑖𝑑2 = 𝑟𝑖𝑔ℎ𝑡 −
𝑟𝑖𝑔ℎ𝑡 − 𝑙𝑒𝑓 𝑡

3
In each iteration we update the left, right, mid1 and mid2. We compare

the value at index mid1 and mid2 till we either find the element or we
exaust the list.

40

4.2. Implementation

def ternary_search(arr, target):

left = 0

right = len(arr) - 1

while left <= right:

Calculate the mid1 and mid2 points

mid1 = left + (right - left) // 3

mid2 = right - (right - left) // 3

if arr[mid1] == target:

Check if the target is at mid1

return mid1

if arr[mid2] == target:

Check if the target is at mid2

return mid2

if target < arr[mid1]:

If the target is smaller than

the element at mid1, update

the right pointer

right = mid1 - 1

elif target > arr[mid2]:

If the target is larger than

the element at mid2, update

the left pointer

left = mid2 + 1

else:

If the target is between mid1 and mid2

update the pointers

left = mid1 + 1

right = mid2 - 1

return -1

Example usage

41

arr = [4, 16, 29, 36, 47, 55, 67, 88, 99, 101, 119, 124]

target = 55

result = ternary_search(arr, target)

if result != -1:

print("Element", target, "found at index", result)

else:

print("Element", target, "not found in the array")

4.3. Time Complexity Analysis

The Ternary Search Algorithm’s time complexity is 𝑂(𝑙𝑜𝑔3𝑛), where 𝑛 is
the size of the array being searched. Here’s how the time complexity is
derived:

In each iteration of the algorithm, the search range is divided into three
segments using the twomidpoints. This means that with each iteration, the
size of the remaining search range decreases by a factor of 13 . Therefore, the
number of iterations required to narrow down the search range to a single
element (or determine that the element is not present) is proportional to
the number of times you can divide 𝑛 by 3.

Let’s express this in terms of iterations:

• In the first iteration, the size of the array is 𝑛.
• After the first iteration, the size becomes 𝑛

3 .

• After the second iteration, the size becomes
𝑛
3
3 = 𝑛

9
• After 𝑘 iterations, the size becomes 𝑛

3𝑘

You can stop the algorithm when the size of the search range becomes 1
or less. In other words, when 𝑛

3𝑘 is less than or equal to 1:

𝑛
3𝑘

<= 1

𝑛 <= 3𝑘

𝑙𝑜𝑔3𝑛 <= 𝑘

The number of iterations 𝑘 required to narrow down the search range to
a single element (or determine that the element is not present) is bounded
by 𝑙𝑜𝑔3𝑛. This is why the time complexity of the Ternary Search Algorithm

42

is 𝑂(𝑙𝑜𝑔3𝑛), which is more efficient than binary search’s time complexity
of 𝑂(𝑙𝑜𝑔2𝑛) for larger arrays.

4.4. Applications

• Peak Finding: In signal processing or data analysis, ternary search
can identify peaks or valleys in datasets efficiently. For instance,
it might be used to find the peak intensity in signal processing
applications or identifying the lowest or highest point in certain
environmental or scientific datasets.

• Minimizing Cost Functions: In cost optimization problems like
in industrial engineering, ternary search excels at converging on
the input values that minimize manufacturing, transportation, or
supply chain expenses expressed as a cost function.

4.5. Bibliography

• Donald E. Knuth The art of computer programming, volume 3: (2nd
ed.) sorting and searching (Addison Wesley Longman Publishing
Co., Inc.) (1998)

• Chen Xin-yi Ternary search algorithm, Science Technology and
Engineering (2008), https://api.semanticscholar.org/CorpusID:
124594637

• Dimitrios Ventzas & Nikos Petrellis Peak searching algorithms and
applications, Proceedings of the IASTED International Confer-
ence on Signal and Image Processing and Applications, SIPA
2011 (2011)

• T. H. Cormen et al. Introduction to algorithms, third edition
(MIT Press) (2009)

• Manpreet Singh Bajwa et al. Ternary search algorithm: Improve-
ment of binary search, 2015 2nd International Conference on
Computing for Sustainable Global Development (INDIACom)
1723–1725 (2015), https://api.semanticscholar.org/CorpusID:1259619

• Minimizing cost function using iterative search for a
minimum method, https://scicomp.stackexchange.com/questions/
34694/minimizing-cost-function-using-iterative-search-for-a-
minimum-method (last visited Feb 26, 2023)

43

https://api.semanticscholar.org/CorpusID:124594637
https://api.semanticscholar.org/CorpusID:124594637
https://api.semanticscholar.org/CorpusID:1259619
https://scicomp.stackexchange.com/questions/34694/minimizing-cost-function-using-iterative-search-for-a-minimum-method
https://scicomp.stackexchange.com/questions/34694/minimizing-cost-function-using-iterative-search-for-a-minimum-method
https://scicomp.stackexchange.com/questions/34694/minimizing-cost-function-using-iterative-search-for-a-minimum-method

5. Jump Search

Jump Search is a search algorithm designed to efficiently find a target value
within a sorted array by dividing the array into smaller blocks or “jumps,”
and then performing linear search within those blocks to locate the target.

The algorithm starts by making jumps of a fixed step size through the
array until it finds a block where the target value might be located. Once
a block is identified, a linear search is performed within that block to find
the exact position of the target.

Determining the optimal jump distance in a jump search algorithm is
crucial for maximizing its efficiency. While there is no universal formula
for the ideal jump distance, it can be estimated based on the length of the
sorted array (n) using the following formula:

𝐷 = √𝑛

This formula is based on the concept that the jump distance should be
large enough to quickly traverse the sorted array while avoiding excessive
jumps that could lead to performance overhead.

44

5.1. How it Works

To perform a Jump Search, the list must be sorted in ascending or descend-
ing order. The algorithm works as follows:

• Set a jump distance or block size step, typically the square root of
the list’s length.

• Initialize two pointers, left and right, to mark the current block
boundaries. Set left to 0 and right to the minimum between step and
the list’s length.

• While the target element is greater than the element at the right
boundary or the end of the list is not reached, continue the search:

a. If the target element is less than the element at the right bound-
ary, perform a linear search within the current block from left

to right.
b. If the target element is found within the block, the search is

successful.
c. If the target element is not found, update left to right + 1 and

update right to the next block boundary (minimum between
right + step and the list’s length).

• If the end of the list is reached, the target element is not present in
the list.

45

5.2. Implementation

import math

def jump_search(sorted_list, target):

n = len(sorted_list)

Calculate the jump distance

step = int(math.sqrt(n))

Initialize the left pointer

left = 0

Initialize the right pointer

right = min(step, n)

While the target element is greater than the

element at the right boundary or the end of the

list is not reached, continue searching.

while right < n and sorted_list[right] < target:

Move the left pointer to the right boundary

left = right

Move the right pointer to the next block boundary

right = min(right + step, n)

Perform a linear search within the current block

for i in range(left, right):

if sorted_list[i] == target:

Target element found at index `i`

return i

Target element not found in the list

return -1

Example usage:

sorted_list = [1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25]

target = 13

result = jump_search(sorted_list, target)

if result != -1:

print(f"Target element {target} found at index: {result}")

46

else:

print(f"Target element {target} not found in the list.")

5.3. Time Complexity Analysis

Jump Search’s time complexity is 𝑂(√𝑛), where 𝑛 is the number of elements
in the list. The algorithm’s efficiency is derived from the reduced number
of comparisons required to narrow down the search space by making
“jumps” through the list.

5.4. Advantages

• Efficiency for Large Arrays: Jump search has a time complexity
of 𝑂(√𝑛), where n is the number of elements.

5.5. Limitations

• Jump Search requires a sorted list, which can be a limitation if the
data is not initially sorted.

5.6. Applications

• Searching in Large Datasets: Jump Search is useful for search-
ing within large datasets, especially when binary search might be
overkill. You can make larger jumps for larger dataset and it can
outperform binary search.

• Searching in Logs: Jump Search can help locate specific events or
timestamps within log files, which are often sorted chronologically.

5.7. Bibliography

• Ben Shneiderman Jump searching: A fast sequential search technique,
21 Commun. ACM 831–834 (1978), https://doi.org/10.1145/359619.
359623

• Thompson, Mark. Algorithm Handbook. N.p.: Lulu.com, 2018.

47

https://doi.org/10.1145/359619.359623
https://doi.org/10.1145/359619.359623

7. Interpolation Search

Imagine you’re searching for a specific name like “Sarah” in a phone book.
You wouldn’t start at the beginning and check every name until you find
the right one. Instead, you’d likely flip towards the end of the book and
start scanning the names around there. Interpolation search works in a
similar way. Instead of checking every item in the list, or even starting in
the middle as in the case of binary search, interpolation search estimates
where an item might be based on the values of the items at the beginning
and end of the list. It then checks the item at that estimated position. If
it’s not the item you’re looking for, interpolation search narrows down the
list to either the part before or after the estimated position. This process
continues until the item is found or it’s clear that it’s not in the list.

Binary search is taught in almost all introductory algorithm courses, but
this lesser-known search algorithm can be surprisingly faster than binary
search when data is sorted and uniformly distributed. It can be as fast as
O(log(log(n))), where n is the size of the array.

Assume we have a dataset [1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 26]

and we have to find 17, Point 𝐴 would be (0, 1) and Point 𝐵 would be
(12, 26) where 0 and 12 represent the indexes of 1 and 26 in our input
array respectively. We find the position to search using the interpolation
formula

𝑥 = 𝑥1 + (𝑥2 − 𝑥1) ×
𝑘𝑒𝑦 − 𝑦1
𝑦2 − 𝑦1

7.8 = 0 + (12 − 0) × 17 − 1
26 − 1

7.8 rounded to an integer comes around, so we look at the index 8

54

7.1. How it works

To perform Interpolation Search, the list must be uniformly distributed and
sorted in ascending or descending order. The algorithm works as follows:

• Calculate the estimated position of the target element using interpo-
lation formula:

𝑝𝑜𝑠𝑖𝑡 𝑖𝑜𝑛 = 𝑙𝑜𝑤 + (𝑡𝑎𝑟𝑔𝑒𝑡 − 𝑎𝑟𝑟[𝑙𝑜𝑤]) × ⌊ (ℎ𝑖𝑔ℎ−𝑙𝑜𝑤)
𝑎𝑟𝑟[ℎ𝑖𝑔ℎ]−𝑎𝑟𝑟[𝑙𝑜𝑤] ⌋

Here, low and high are the indices representing the current search
range.

• Compare the target element with the element at pos.

• If the target matches the element at pos, the search is successful, and
we return pos.

• If the target is less than the element at pos, the target must be in the
left half, so update high to pos - 1.

• If the target is greater than the element at pos, the target must be in
the right half, so update low to pos + 1.

55

• Repeat the above steps until the target is found or low becomes
greater than high, indicating the element is not present in the list.

Figure 7.1.: Interpolation Search

7.2. Implementation

def interpolation_search(sorted_list, target):

n = len(sorted_list)

low = 0 1

high = n - 1 2

while low <= high and sorted_list[low] <= target <=

sorted_list[high]:↪

pos = low + ((target - sorted_list[low]) * (high - low) //

(sorted_list[high] - sorted_list[low])) 3

if sorted_list[pos] == target:

return pos 4

elif sorted_list[pos] < target:

low = pos + 1 5

else:

high = pos - 1 6

56

return -1

Example usage:

sorted_list = [1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 26]

target = 13

result = interpolation_search(sorted_list, target)

if result != -1:

print(f"Target element {target} found at index: {result}")

else:

print(f"Target element {target} not found in the list.")

1 Initialize the lower bound of the search range
2 Initialize the upper bound of the search range
3 Estimate the position of the target using interpolation formula
4 Target element found at index pos
5 Target must be in the right half, update the lower bound
6 Target must be in the left half, update the upper bound

7.3. Time Complexity Analysis

Interpolation Search’s time complexity can vary depending on the dis-
tribution of the data. In the best-case scenario, when the data is evenly
distributed, the time complexity is close to 𝑂(𝑙𝑜𝑔(𝑙𝑜𝑔(𝑛))), making it one
of the most efficient search algorithms for large datasets. However, in the
worst-case scenario, the time complexity may be 𝑂(𝑛), especially when
the data is unevenly distributed.

7.4. Advantages and Limitations

Advantages:

• Efficient for Uniformly Distributed Data: Interpolation Search
can be highly efficient when the data is uniformly distributed. It
leverages the sorted order and estimates the probable position of the
target based on the data distribution.

57

• Faster Convergence: Compared to binary search, Interpolation
Search can converge on the target faster in cases where the data
is evenly spaced. This is because it adapts its search based on the
estimated position.

• Slightly Better Than Binary Search: In situations where the data
distribution is uniform, Interpolation Search can perform slightly
better than binary search in terms of the number of comparisons
made.

• Suitable for Numerical Data: Interpolation Search is particularly
useful for searching numerical data sets, where values are distributed
along a range.

Limitations:

• Not Suitable for Non-Numerical Data: Interpolation Search is
designed for numerical data. It’s not suitable for searching non-
numerical data or categorical data.

• Worst-Case Performance: In some cases, Interpolation Search can
have a worst-case time complexity of 𝑂(𝑛), where n is the size of the
array. This can happen when the data distribution is not uniform.

• Potential for Overflow or Underflow: In cases where the data
values are very large or very small, there’s a risk of integer overflow
or underflow during the calculation of the estimated position.

• Depends on Data Characteristics: Interpolation search is only
effective if the differences between the values of the items in the list
are consistent. If the differences are all over the place, interpolation
search won’t be able to make accurate estimates of where the item
you’re looking for might be.

7.5. Applications

• Numerical Analysis: Interpolation Search is used in numerical
analysis to quickly locate intermediate values within sorted numeri-
cal datasets, making computations more efficient.

58

• Financial Analysis: Interpolation Search is applied in financial
analysis to efficiently locate relevant data points within sorted
datasets, such as historical stock prices or economic indicators.

7.6. Bibliography

• W. W. Peterson Addressing for random-access storage, 1 IBM Journal
of Research and Development 130–146 (1957)

• Interpolation search, https://en.wikipedia.org/wiki/Interpolation/
_search (last visited Mar 1, 2023)

• Skiena, Steven S.. The Algorithm Design Manual. Germany, TELOS–
the Electronic Library of Science, 1998.

59

https://en.wikipedia.org/wiki/Interpolation/_search
https://en.wikipedia.org/wiki/Interpolation/_search

8. Exponential Search

Exponential search is an efficient search algorithm for sorted arrays based
on the idea of exponentially jumping ahead early on before applying binary
search.

The idea behind exponential search is to start with a small search space
and then exponentially increasing the size of the search space to find a
range where the target value might exist and then running binary search
within that range to find the target value.

Exponential Search can be particularly effective when the target value
is close to the beginning of the array and the array size is large. Its time
complexity is 𝑂(𝑙𝑜𝑔(𝑛)) in the worst case, making it more efficient than
linear search 𝑂(𝑛).

8.1. How it works

• Set an initial bound bound to 1, representing the first position.

• Double the bound until the element at bound is greater than or
equal to the target element or the end of the list is reached.

60

• Perform a binary search within the range [bound/2, min(bound, n)],
where n is the number of elements in the list.

• If the target element is found, the search is successful, and we return
the index.

• If the target is not found, double the bound again and repeat the
process.

Figure 8.1.: Exponential Search Step 3

61

8.2. Implementation

def exponential_search(sorted_list, target):

n = len(sorted_list)

if sorted_list[0] == target:

Check if the first element is the target

return 0

bound = 1

while bound < n and sorted_list[bound] < target:

Find the appropriate range for binary search

bound *= 2

Perform binary search within the range [bound/2, min(bound, n)]

left = bound // 2

right = min(bound, n) - 1

while left <= right:

mid = (left + right) // 2

if sorted_list[mid] == target:

return mid

elif sorted_list[mid] < target:

left = mid + 1

else:

right = mid - 1

return -1

Example usage:

sorted_list = [1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 26]

target = 13

result = exponential_search(sorted_list, target)

if result != -1:

print(f"Target element {target} found at index: {result}")

else:

print(f"Target element {target} not found in the list.")

62

8.3. Time Complexity Analysis

The time complexity of exponential search can be broken down into two
parts:
Exponential Search Phase: The exponential phase runs in 𝑂(𝑙𝑜𝑔(𝑛))

time, where ‘n’ is the size of the array. This phase involves finding the
range where the target value might exist by doubling the index in each
iteration.
Binary Search Phase: After determining the potential range using

exponential search, a binary search is performed within that range. The
binary search phase runs in 𝑂(𝑙𝑜𝑔𝑚), where ‘m’ is the size of the identified
range.

The overall time complexity of exponential search is the sum of the
complexities of these two phases:
𝑂(𝑙𝑜𝑔(𝑛)) + 𝑂(𝑙𝑜𝑔𝑚) In the worst case, when the target value is at the

beginning of the array or absent, the binary search phase would search
through the entire range determined by the exponential phase, resulting
in 𝑂(𝑙𝑜𝑔(𝑛)) + 𝑂(𝑙𝑜𝑔(𝑛)) = 𝑂(𝑙𝑜𝑔(𝑛)) time complexity.

However, in scenarios where the target value is closer to the start of the
array, exponential search can be more efficient than performing a binary
search throughout the entire array.

8.4. Advantages

• Efficient for Early Elements: Exponential Search is efficient when
the target value is located near the beginning of the sorted array. It
quickly narrows down the search space by exponentially increasing
the search range.

• Logarithmic Time Complexity: In favorable scenarios, Exponen-
tial Search has a logarithmic time complexity of 𝑂(𝑙𝑜𝑔(𝑖)), where 𝑖 is
the index where the target is found. This can be more efficient than
linear search, especially for larger arrays.

• Simpler Implementation: Exponential Search is easier to imple-
ment compared to more complex algorithms like binary search. It
involves straightforward calculations and looping.

• Adaptability to Distribution: Exponential Search can be partic-
ularly effective when the data distribution is non-uniform. It can
quickly skip over regions of the array that are unlikely to contain

63

the target.

8.5. Limitations

• Limited to Sorted Arrays: Exponential Search requires the input
array to be sorted. If the array is not sorted, the algorithm will not
work correctly.

• Inefficient for Late Elements: When the target value is located
near the end of the array, Exponential Search can require a large
number of iterations to reach the target, making it inefficient com-
pared to binary search.

• Array Size Impact: Exponential Search’s efficiency is significantly
impacted by the array size. For larger arrays, the exponential growth
of the search range can lead to a substantial number of iterations.

• No Benefit from Uniform Distribution: If the data distribution
is uniform or lacks large gaps between elements, Exponential Search
might not provide notable advantages over other search algorithms
like binary search.

8.6. Applications

• Searching in large sorted datasets: Exponential search is partic-
ularly useful when dealing with large datasets that are sorted. It
allows for efficient searching by reducing the number of comparisons
required compared to linear search algorithms.

• Searching in unbounded or unknown-sized arrays: Exponential
search is advantageous when the size of the array is unknown or
unbounded. It can be used to quickly locate an element without
needing to know the exact size of the array in advance.

• Searching in distributed systems: Exponential search can be
applied in distributed systems where data is stored across multiple
nodes or servers. It enables efficient searching by minimizing the
number of network requests required to find the desired element.

64

8.7. Bibliography

• Thomas H. Cormen et al. Introduction to algorithms (The MIT
Press 3rd) (2009)

• Robert Sedgewick & Kevin Wayne Algorithms (Addison-Wesley
Professional 4th) (2011)

• Steven S. Skiena The algorithm design manual (Springer 2nd)
(2008)

• Michael T. Goodrich et al. Data structures and algorithms in
python (Wiley 1st) (2013)

65

9. Fibonacci Search

Fibonacci sequence is a series of numbers in which each number is the
sum of the two preceding ones, typically starting with 0 and 1. 0, 1, 1, 2, 3,
5, 8, 13, 21, and so on.

0

1

1 = 1 + 0

2 = 1 + 1

3 = 2 + 1

5 = 3 + 2

8 = 5 + 3

13 = 8 + 5

21 = 13 + 8

..

..

..

Fibonacci search algorithm uses the Fibonacci sequence to narrow down
the search space and find a specific value in a sorted array. It is a variant of
binary search, but utilizes Fibonacci numbers to determine the partitions
of the search space more effectively. By dividing the search space based
on the Fibonacci sequence, the search algorithm can effectively determine
the most likely location of the target value quickly. This leads to a time
complexity of 𝑂(𝑙𝑜𝑔(𝑛)), where 𝑛 is the size of the array, making it more
efficient than linear search, which is 𝑂(𝑛).

9.1. How it works

Let’s take the following sorted array in which we have to find the number
99.

66

[4, 16, 29, 36, 47, 55, 67, 88, 99, 101, 119, 124]

We start by finding the required Fibonacci numbers 𝐹0, 𝐹1 and 𝐹2 for
𝑠𝑖𝑧𝑒 = 12. The smallest Fibonacci number ≥ 12 is 13, which means our
𝐹2 = 13, 𝐹1 = 8, and 𝐹0 = 5.

Once we have our Fibonacci numbers, we keep narrowing down our
search scope till we find our element or we run out of elements.
Iteration 1
Initially our offset will be equal to -1, and the end index can be calculated

using the below formula.

𝑖𝑛𝑑𝑒𝑥 = min (offset + 𝐹0, size − 1) = min((−1 + 5, 11) = 4

Since the element we are looking for (99) is greater than the element at
index 4 (47), we move one Fibonacci number down

𝐹2 = 𝐹1

𝐹1 = 𝐹0

𝐹0 = 𝐹2 − 𝐹1

The updated Fibonacci numbers are: 𝐹2 = 8, 𝐹1 = 5, 𝐹0 = 3 and offset =
4

Iteration 2
We compute

𝑖𝑛𝑑𝑒𝑥 = min (𝑜𝑓 𝑓 𝑠𝑒𝑡 + 𝐹0, 𝑛 − 1) = min((4 + 3, 11) = 7

The element at index 7 in arr is 88. Since 99 ≥ 88, we again move one
Fibonacci number down,

𝐹2 = 𝐹1

𝐹1 = 𝐹0

𝐹0 = 𝐹2 − 𝐹1

The updated Fibonacci numbers are: 𝐹2 = 5, 𝐹1 = 3, 𝐹0 = 2 and offset =
7

Iteration 3

67

We compute

𝑖𝑛𝑑𝑒𝑥 = min (𝑜𝑓 𝑓 𝑠𝑒𝑡 + 𝐹0, 𝑛 − 1) = min((7 + 2, 11) = 9

The element at index 9 in arr is 101. Since 99 ≤ 101, we move one
Fibonacci number up,

𝐹2 = 𝐹0

𝐹1 = 𝐹1 − 𝐹0

𝐹0 = 𝐹2 − 𝐹1

The updated Fibonacci numbers are: 𝐹2 = 2, 𝐹1 = 1, 𝐹0 = 1 and offset =
7

Iteration 4
We compute

𝑖𝑛𝑑𝑒𝑥 = min (𝑜𝑓 𝑓 𝑠𝑒𝑡 + 𝐹0, 𝑛 − 1) = min((7 + 1, 11) = 8

The element at index 8 is 99, which is what we are looking for. We
return the index and stop.

68

9.2. Implementation

def fibonacci_search(lst, target):

size = len(lst)

start = -1

f0 = 0

69

f1 = 1

f2 = 1

while(f2 < size):

Generate Fibonacci Numbers

f0 = f1

f1 = f2

f2 = f1 + f0

while(f2 > 1):

Calculate the index to

compare with the target value

index = min(start + f0, size - 1)

if lst[index] < target: 3

f2 = f1

f1 = f0

f0 = f2 - f1

start = index

elif lst[index] > target:

Move two Fibonacci numbers up

and update the start index

f2 = f0

f1 = f1 - f0

f0 = f2 - f1

else:

Return the index if the target

value is found

return index

if (f1) and (lst[size - 1] == target):

return size - 1

return None

Example usage

arr = [2, 3, 4, 6, 7, 8, 9, 12, 13, 15,

19, 20, 23, 25, 28, 32, 33, 37, 39, 41,

43, 46, 47, 49, 52, 55, 56, 58, 59, 60,

61, 63, 64, 68, 70, 71, 72, 74, 76, 78,

80, 81, 85, 89, 90, 91, 94, 96, 97, 99]

70

x = 7

result = fibonacci_search(arr, x)

if result != -1:

print("Element", x, "found at index", result)

else:

print("Element", x, "not found in the array")

9.3. Time Complexity Analysis:

The time complexity of Fibonacci search is logarithmic, similar to binary
search, but with a different constant factor.

Here’s a breakdown of the time complexity:

1. Calculating Fibonacci Numbers: Generating the Fibonacci num-
bers up to a value greater than or equal to the array size takes
𝑂(𝑙𝑜𝑔(𝑛)) time. This is because the sequence of Fibonacci numbers
grows exponentially, but the number of Fibonacci numbers needed
for an array of size ′𝑛′ is limited (usually less than 𝑙𝑜𝑔(𝑛)).

2. Dividing the Array: The search involves dividing the array using
Fibonacci numbers, which takes 𝑂(1) time per iteration. The num-
ber of iterations is limited by the sequence of Fibonacci numbers
generated, which is at most log(n).

3. Binary Search within Segments: Once the array is divided using
Fibonacci numbers, a binary search is performed in each segment.
Binary search within each segment also takes 𝑂(𝑙𝑜𝑔(𝑘)) time, where
′𝑘′ is the size of the segment.

Therefore, the overall time complexity of Fibonacci search is 𝑂(𝑙𝑜𝑔(𝑛))
for calculating Fibonacci numbers plus 𝑂(𝑙𝑜𝑔(𝑘)) for performing binary
searcheswithin the identified segments, where ′𝑘′ is the size of the segment.
In most practical scenarios, the total time complexity is still 𝑂(𝑙𝑜𝑔(𝑛)), but
Fibonacci search might have a slightly higher constant factor compared to
traditional binary search due to additional arithmetic operations involved
in calculating Fibonacci numbers and determining the segments.

71

9.4. Advantages

• Efficiency: The algorithm narrows down the search space quickly,
resulting in a time complexity of 𝑂(𝑙𝑜𝑔(𝑛)). This makes it more
efficient than linear search 𝑂(𝑛) and comparable to binary search.

• Simplicity: The algorithm’s logic is relatively simple, making it
easy to implement.

9.5. Limitations

• Requires a sorted array: The arraymust be sorted for the Fibonacci
Search Algorithm to work effectively. If the array is not sorted, a
pre-processing step to sort it is needed.

9.6. Applications

• Optimizing Machine Learning Hyperparameters - When evalu-
ating different hyperparameters like neural network layers or SVM
cost values, Fibonacci search provides an efficient methodology.

• Root Finding Algorithms - Methods like Newton-Raphson lever-
age concepts similar to Fibonacci search for numerically approxi-
mating roots of equations.

• Bioinformatics - Fibonacci coding has been utilized in areas like
DNA sequence analysis and alignment to improve computational
efficiency

9.7. Bibliography

• Fibonacci search technique - Wikipedia — en.wikipedia.org,
https://en.wikipedia.org/wiki/Fibonacci_search_technique

• David E. Ferguson Fibonaccian searching, 3 Commun. ACM 648
(1960), https://doi.org/10.1145/367487.367496

• Donald E. Knuth The art of computer programming, volume 3: (2nd
ed.) sorting and searching (Addison Wesley Longman Publishing
Co., Inc.) (1998)

72

https://en.wikipedia.org/wiki/Fibonacci_search_technique
https://doi.org/10.1145/367487.367496

Part II.

Hash-Based Search

73

10. Basics

Hashing is a process used to convert input data (such as a string or any
other type of data) into a fixed-size value, typically a numeric value, using
a hash function. This output value is often called a hash code or hash
value.

A simple hash function could involve summing up the ASCII values
of characters in a string and taking the modulo of a prime number to
constrain the output within a specific range. Here’s an example in Python:

def simple_hash(text):

prime = 31 # Choosing a prime number for modulo

hash_value = 0

for char in text:

hash_value += ord(char) # Adding ASCII values of characters

hash_value %= prime # Taking modulo to limit the value

return hash_value

Example usage:

input_string = "Hello, Simple Hash Function!"

hashed_value = simple_hash(input_string)

print(f"Hashed value for '{input_string}': {hashed_value}")

Hashed value for 'Hello, Simple Hash Function!': 6

Keep in mind, this is a very basic hash function and not suitable for cryp-
tographic purposes or extensive data integrity checks due to its simplicity
and potential for collisions. In real-world applications, robust hash func-
tions with lower collision probabilities and better distribution properties
are used.

74

10.1. Hash table

The hash value is used to map the input to a specific location in a data
structure called a hash table. Hash tables are a type of associative array
that can be used to efficiently store and retrieve data.

Hashing is a very efficient way to implement data structures because it
allows for constant-time lookup, insertion, and deletion operations. This
is in contrast to other data structures, such as linked lists and trees, which
can have lookup, insertion, and deletion times that are proportional to the
size of the data structure.

10.2. How Hashing Works

The hashing process typically involves the following steps:

1. Choose a hash function. A hash function is a mathematical func-
tion that takes an input of variable size and produces a fixed-size
output. The hash function should be designed so that it is difficult
to find two different inputs that produce the same hash value. This
is called a collision.

2. Apply the hash function to the input. This will generate a hash
value.

75

3. Use the hash value to map the input to a specific location in
the hash table. The hash table is an array of buckets, and the index
of the bucket is determined by the hash value.

4. Store the input-value pair in the appropriate bucket.

10.3. Types of Hash Functions

There are many different types of hash functions, but some of the most
common include:

10.3.1. Modulo arithmetic hash functions

These hash functions use the modulo arithmetic operator to generate a
hash value. For example, the hash function ℎ(𝑥) = (𝑥)𝑚𝑜𝑑(𝑚), where 𝑚
when equal to 10 would generate a hash value between 0 and 9 for any
input 𝑥.

Here is a simple program for a modulo arithmetic hash function:

def modulo_arithmetic_hash_function(key, table_size):

"""

Calculates the hash value of a key using

the modulo arithmetic hash function.

Args:

key (int): The key to hash.

table_size (int): The size of the hash table.

Returns:

int: The hash value of the key.

"""

return key % table_size

Here is an example of how to use the function:

key = 12345

table_size = 10000

hash_value = modulo_arithmetic_hash_function(key, table_size)

76

print("Hash value of", key, "using modulo arithmetic hash function:",

\↪

hash_value)

This code will print the following output:

Hash value of 12345 using modulo arithmetic hash function: 2345

10.3.2. Multiplication hash functions

These hash functions multiply the input by a constant and then take
the remainder after dividing by a prime number. For example, the hash
function ℎ(𝑥) = 𝑥 ∗ 53𝑚𝑜𝑑101 would generate a hash value between 0 and
100 for any input x.

Here is a simple program that demonstrates the use of a multiplication
hash function:

def multiplication_hash_function(key, table_size):

"""

Calculates the hash value of a key

using the multiplication hash function.

Args:

key (int): The key to hash.

table_size (int): The size of the hash table.

Returns:

int: The hash value of the key.

"""

constant = 0.53 # The constant used for multiplication

result = key * constant

fractional_part = result - int(result) 1

hash_value = int(fractional_part * table_size) 2

return hash_value

77

key = 12345

table_size = 10000

hash_value = multiplication_hash_function(key, table_size)

print("Hash value of", key, "using multiplication hash function:", \

hash_value)

1 Extract the fractional part of the result
2 Multiply the fractional part by the table size and convert to an integer

Here is an example of how to use the function:

key = 12345

table_size = 10000

hash_value = multiplication_hash_function(key, table_size)

print("Hash value of", key, "using multiplication hash function:", \

hash_value)

This code will print the following output:

Hash value of 12345 using multiplication hash function: 6475

10.3.3. Tabulation hash functions

It’s a method that involves creating a table (or multiple tables) of precom-
puted values and using those values to compute the hash code of a given
input. The idea is to break down the input into smaller components and
use precomputed values for those components to create a final hash. The
precomputed tables allow for quick computation of hash codes by directly
looking up values associated with individual components of the input.
This method also exhibits good properties in terms of randomness and
distribution of hash codes.

Here’s a very basic example in Python of a tabulation hash function for
a string:

import random

class TabulationHash:

78

def __init__(self, num_tables, table_size):

self.num_tables = num_tables

self.table_size = table_size

self.tables = []

for _ in range(num_tables):

table = []

for _ in range(256):

table.append(random.randint(0, 255))

self.tables.append(table)

def hash(self, input_string):

result = 0

for i, char in enumerate(input_string):

table = self.tables[i % self.num_tables]

result ^= table[ord(char)]

return result

Example usage

tabulation_hash = TabulationHash(num_tables=4, table_size=256)

hash_code = tabulation_hash.hash("example")

print("Hash Code:", hash_code)

This example demonstrates a simplified tabulation hash function for
strings using XOR operations with precomputed random values. In prac-
tice, more sophisticated methods might be used for precomputation and
combining values.

10.4. Hash Collisions

In computer science, a hash collision or hash clash occurs when two
different pieces of data in a hash table share the same hash value. This
means that the hashing algorithm has produced the same output for two
distinct inputs.

79

Hash collisions are an inherent characteristic of hashing algorithms
due to the fact that there are infinitely many possible inputs but a finite
number of possible hash values. As a result, there is always a possibility
of two or more inputs mapping to the same hash value, especially when
the hash table is densely populated.

To mitigate the impact of hash collisions, several strategies can be em-
ployed:

1. Choose a good hash function: A well-designed hash function
should distribute hash values evenly and minimize the likelihood of
collisions.

2. Use a large hash table: Increasing the size of the hash table reduces
the load factor, which in turn reduces the probability of collisions.

3. Alternative techniques: Techniques like linear probing, chaining,
or quadratic probing can effectively handle collisions by exploring
alternative locations in the hash table for the collided key.

10.5. Bibliography

• A. G. Konheim Hashing in computer science: Fifty years of
slicing and dicing (Wiley) (2010)

• T. Mailund The joys of hashing: Hash table programmingwith
c (Apress) (2019)

80

• J. Pieprzyk & B. Sadeghiyan Design of hashing algorithms
(Springer) (2014)

81

11. Hash Table Search

Hash Table Search is a searching technique that uses a hash function to
efficiently retrieve data from a collection (usually an array) based on a
unique key. It offers rapid data retrieval by converting the key into an
index within the array where the desired data is stored.

The hash function maps the key to an index, allowing for direct access
to the corresponding data. This approach provides constant-time average
case performance for retrieval, making Hashing Search highly efficient.

However, Hashing Search has some considerations:

• Hash Collisions: Different keys may hash to the same index, caus-
ing collisions. Techniques like chaining or open addressing are used
to handle collisions and ensure accurate data retrieval.

• Hash Function Quality: The efficiency of Hashing Search relies on
a good hash function that distributes keys evenly across the array. A
poor hash function can lead to clustering and degrade performance.

• Space Overhead: Hashing Search may use extra space for hash
table storage, especially in situations with frequent collisions.

• No Sorting: Hashing Search is primarily suited for retrieval and
not for searching ranges or maintaining sorted data.

82

11.1. How it works

• Create a hash table data structure with an array and hash function.
• Insert key-value pairs into the hash table using the hash function to
compute the index.

• To find a target element, apply the hash function to the target key
to determine its index in the hash table.

• If the element is found at that index, the search is successful, and
we retrieve the corresponding value.

• In case of hash collisions (when two elements map to the same
index), use techniques like chaining or open addressing to handle
them efficiently.

11.2. Implementation

class KeyValue:

def __init__(self, key, value):

self.key = key

83

self.value = value

TABLE_SIZE = 10

def hash(key):

Basic hash function that calculates the sum

of ASCII values of characters in the key

hash_value = 0

for character in key:

hash_value += ord(character)

return hash_value % TABLE_SIZE

def hashSearch(hash_table, key):

Compute the hash value (index) for the given

key

index = hash(key)

Check if the element exists at the computed

index in the hash table

if hash_table[index] is not None:

If the key-value pair exists, compare the

key to ensure it is the target element

if hash_table[index].key == key:

Target element found, return the

corresponding value

return hash_table[index].value

Target element not found in the hash table

return None

Example usage:

Create a hash table and insert key-value pairs

hash_table = [None] * TABLE_SIZE

hash_table[hash("apple")] = KeyValue("apple", "fruit")

hash_table[hash("banana")] = KeyValue("banana", "fruit")

hash_table[hash("carrot")] = KeyValue("carrot", "vegetable")

Perform the hash-based search for a target key

84

target_key = "banana"

result = hashSearch(hash_table, target_key)

if result is not None:

print(f"The value for key '{target_key}' is '{result}'")

else:

print(f"Key '{target_key}' not found in the hash table.")

11.3. Time Complexity Analysis

Hash-Based Search has an average-case time complexity of 𝑂(1) for re-
trieval, making it highly efficient. In the best-case scenario, when the hash
function distributes elements uniformly across the table, the search time
is constant. However, in the worst-case scenario, hash collisions might
cause the time complexity to degrade to 𝑂(𝑛), where 𝑛 is the number of
elements in the hash table.

11.4. Advantages

• Fast Retrieval: Offers constant-time retrieval, 𝑂(1) on average
for accessing elements based on keys. This efficiency remains
consistent even with a large dataset.

• Efficient Insertion and Deletion: Adding or removing elements
from a hash table is generally efficient with a well-implemented
hashing function, providing 𝑂(1) average-case complexity.

• Ease of Implementation: Implementing hash-based search is rela-
tively straightforward, and modern programming languages often
provide built-in hash table data structures.

11.5. Limitations

• Collision Resolution: Hash collisions occur when two different
keys hash to the same location. Resolving collisions can affect per-
formance, requiring additional techniques like chaining or open
addressing.

85

• Dependency on Hash Function: The efficiency of hash-based
search heavily relies on the quality of the hash function. A poor
hash function might lead to more collisions, impacting overall per-
formance.

• Limited Range of Use: It is less suitable for range queries or
operations that require ordered traversal of elements compared to
other data structures like trees.

11.6. Applications

• Caching Mechanisms: In computer systems, hash-based search is
utilized in caching mechanisms. A hash table is employed to store
frequently accessed data, enhancing access speed and reducing the
need for expensive computations or I/O operations.

• Compiler Symbol Tables: Compilers use hash tables to store
identifiers, variables, and functions, allowing quick access during
parsing and compilation stages.

• Password Verification: Hash-based searching secures password
storage by hashing and storing passwords in a hash table, enabling
rapid authentication without directly storing plaintext passwords.

• Deduplication: Hashing is used to identify and eliminate duplicate
data in storage systems, aiding in deduplication processes to optimize
storage space.

• Load Balancing and Distributed Systems: Hashing is employed
in load balancing algorithms to distribute requests and data across
multiple servers in a distributed system. By using hash functions to
assign requests to specific servers, the system can achieve efficient
resource utilization and improve overall performance.

11.7. Bibliography

• B. J. McKenzie et al. Selecting a hashing algorithm, 20 Software:
Practice and Experience 209–224 (1990), https://onlinelibrary.
wiley.com/doi/abs/10.1002/spe.4380200207

• G. T. Heineman et al. Algorithms in a nutshell: A practical
guide (O’Reilly Media) (2016)

86

https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.4380200207
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.4380200207

12. Bloom Filter

Imagine you have a large library with thousands of books, and you want
to quickly find a specific book without having to check every single shelf.
A Bloom filter can be like a librarian’s assistant who helps you narrow
down your search.

The librarian’s assistant has a set of special cards, each with a unique
code. When you ask for a book, the assistant takes the book’s title and
uses it to generate a code. Then, the assistant checks three different cards
using that code. If all three cards are marked with a special symbol, then
the book is probably in the library.

However, just like the librarian’s assistant might sometimes make a
mistake, the Bloom filter can also make a false positive. This means that
it might tell you that a book is in the library when it actually isn’t. But
the probability of this happening is very small, and it’s much faster than
checking every single shelf.

A Bloom filter is like a quick and dirty way to check if something is
in a set. It’s not perfect, but it’s very efficient and can be used in many
different situations.

Bloom filters are often used in applications where false positives are
acceptable, but false negatives are not. For example, they are used in spam
filters to quickly determine whether an email is spam, even if there is a
small chance of incorrectly identifying a legitimate email as spam.

87

12.1. How it Works

12.1.1. A high level view

The Bloom filter is initialized with an array of all 0s. Each element in the
set 𝑥1 is hashed 𝑘 times, and each hash function generates a bit location.
These locations are then set to 1. To check if an element 𝑦 is present in
the database, we first check its likelihood of being in the database using
the Bloom filter. We hash this element using 𝑘 hash functions. If any
of the corresponding bit locations in the Bloom filter is 0, then we can
definitively say that the element 𝑦 is not in the database. Otherwise, if all
of the corresponding bit locations are 1, then the element 𝑦 is likely in the
database, but there is a possibility of a false positive.

12.1.2. Detailed view

A Bloom Filter consists of the following components:

• Bit Array: This is the heart of the Bloom Filter, an array of bits,
typically initialized to all zeros.

• Hash Functions: A set of 𝑘 hash functions, each of which maps an
element to one of the bits in the bit array.

Here’s how a Bloom Filter operates:

• Initialization: Create a bit array of size 𝑚, initialized with all zeros.
Choose 𝑘 hash functions. We need 𝑘 number of hash functions to

88

calculate the hashes for a given input. When we want to add an item
in the filter, the bits at 𝑘 indices ℎ1(𝑥), ℎ2(𝑥), …ℎ𝑘(𝑥) are set, where
indices are calculated using hash functions.

• Insertion: To add an element to a Bloom filter, the element is hashed
using each of the hash functions. The bit corresponding to each
hash value is then set to 1.

• Membership Test: To check if an element is in the set, apply the
same 𝑘 hash functions to the element. If all the corresponding bits
in the bit array are 1, it’s likely that the element is in the set. If any
bit is 0, the element is definitely not in the set.

Bloom filters are probabilistic data structures, which means that there
is a small chance of false positives. A false positive occurs when a Bloom
filter returns a positive result for an element that is not a member of the
set. The probability of a false positive depends on the size of the bit array
and the number of hash functions used.

12.2. Implementation

This is a simplified implementation for demonstration purposes, and a com-
plete production-ready Bloom Filter would require careful consideration
of hash functions and optimal parameters.

89

#!/usr/bin/python

-*- coding: utf-8 -*-

import mmh3

import bitarray

class BloomFilter:

def __init__(self, size, hash_count):

Initialize a bit array of the given size

self.bit_array = bitarray.bitarray(size)

Set all bits in the bit array to 0

self.bit_array.setall(0)

Store the size of the bit array

self.size = size

Store the number of hash functions to use

self.hash_count = hash_count

def add(self, item):

for i in range(self.hash_count):

index = mmh3.hash(item, i) % self.size

Set the bit at the calculated index to 1

self.bit_array[index] = 1

def lookup(self, item):

Check each hash function

for i in range(self.hash_count):

Calculate the index using the hash function

index = mmh3.hash(item, i) % self.size

If the bit at the calculated index is 0,

the item is not in the filter

if self.bit_array[index] == 0:

return False

If all hash functions return 1, the item

may be in the filter

return True

bf = BloomFilter(100, 3)

bf.add("key1")

90

print(bf.lookup("key1")) # True

print(bf.lookup("key2")) # Could be False Positive!

In this example, the BloomFilter class represents a Bloom Filter with a
given size and number of hash functions. The add method adds items to
the Bloom Filter by setting corresponding bits in the bit array. The contains

method checks if items are present in the Bloom Filter by checking the
corresponding bits in the bit array using multiple hash functions.

Please note that this is a simplified implementation, and a complete
Bloom Filter would require choosing appropriate hash functions, determin-
ing the optimal number of hash functions, and considering the acceptable
false positive rate.

12.3. Visualization

Here is what the data may look like when we add multiple words to our
bit array by running multiple hash functions.

12.3.1. Adding an item to the Bloom Filter

• The element is hashed through 𝑘 hash functions
• The modulo n (length of bit array) operation is executed on the
output of the hash function to identify the k array positions

• The bits at all identified blocks are set to one There is a probability
that some bits on the array are set to one multiple times due to hash
collisions.

91

12.3.2. Check the membership of an item

The following operations are executed to check if an item is a member of
the bloom filter:

• The item is hashed through the same 𝑘 hash functions
• The modulo n (length of bit array) operation is executed on the
output of the hash functions to identify the k array positions

• Verify if all the bits at identified blocks are set to one

In the above figure, you can see that Grapes points to a position in the bit
array which is 0. If any of the identified bits are set to zero, the item is not
a member of the bloom filter. If all the bits are set to one, the item might
be a member of the bloom filter. The uncertainty about the membership of

92

an item is due to the possibility of some bits being set to one by different
items or due to hash function collisions.

12.4. Time complexity Analysis

The time complexity analysis of Bloom Filter operations involves consid-
ering the hash calculations and bit manipulations for adding elements and
querying membership. Here’s a breakdown of the time complexity for
various operations in the Bloom Filter:

1. Adding Elements (Insertion):

• Adding an element involves applying hash functions and set-
ting corresponding bits in the bit array.

• Since the number of hash functions is constant (denoted as
“k”), the time complexity for adding an element is 𝑂(𝑘).

2. Querying Membership (Contains Operation):

• Querying membership also involves applying hash functions
and checking corresponding bits in the bit array.

• Since the number of hash functions is constant (denoted as
“k”), the time complexity for querying membership is 𝑂(𝑘).

3. False Positive Rate and Hash Collisions:

• The primary trade-off of Bloom Filters is their probabilistic
nature, which can lead to false positives due to hash collisions.

• The number of hash collisions is determined by factors such
as the number of hash functions, size of the bit array, and the
number of elements added.

• The probability of a false positive can be approximated as

(1 − 𝑒−
𝑘𝑛
𝑚)𝑘, where “k” is the number of hash functions, “n” is

the number of elements added, and “m” is the size of the bit
array.

Overall, the time complexity of Bloom Filter operations (insertion and
querying) is primarily determined by the constant number of hash func-
tions used, which is denoted as “k”. This makes Bloom Filters efficient for
both insertion and querying, as these operations are independent of the
number of elements in the filter.

93

It’s important to note that the primary trade-off of Bloom Filters is their
probabilistic nature, which introduces the possibility of false positives.
The choice of hash functions, number of hash functions, and the size of
the bit array affects both the false positive rate and the time complexity of
operations.

12.5. Advantages

• Memory-Efficient: Bloom Filters use significantly less memory
than traditional data structures like hash tables.

• Constant-Time Lookups: Regardless of the size of the dataset,
Bloom Filters provide constant-time membership testing.

• Parallel Processing: Bloom Filters are highly parallelizable, making
them suitable for distributed systems and multi-threaded applica-
tions.

12.6. Limitations

While Bloom Filters offer many advantages, they also have limitations:

• False Positives: Bloom Filters may produce false positives, meaning
they can mistakenly indicate that an element is in the set when it’s
not. The probability of false positives can be controlled by adjusting
the size of the bit array and the number of hash functions.

• No Deletion: Once an element is inserted into a Bloom Filter, it
cannot be efficiently removed.

• Limited to SetMembershipTesting: Bloom Filters are not suitable
for tasks that require retrieval of the stored data.

12.7. Applications

• Spelling Correction: Spell checkers can use Bloom Filters to
quickly check if a word is in the dictionary.

• Network Routers: Bloom Filters help routers determine whether
an IP address is in a blacklist.

• Duplicate Detection: In distributed systems, Bloom Filters assist
in detecting duplicate data blocks.

94

12.8. Bibliography

• R. Patgiri et al. Bloom filter: A data structure for computer
networking, big data, cloud computing, internet of things,
bioinformatics and beyond (Elsevier Science) (2023)

• Burton H. Bloom Space/time trade-offs in hash coding with allowable
errors, 13 Communication. ACM 422–426 (1970), https://doi.org/10.
1145/362686.362692

• O’Sullivan, Bryan, et al. Real World Haskell. United States, O’Reilly
Media, 2008.

95

https://doi.org/10.1145/362686.362692
https://doi.org/10.1145/362686.362692

Part III.

AI Search Algorithms

110

14. Hill Climbing Algorithm

Hill climbing is a simple optimization algorithm used in artificial intel-
ligence, particularly for solving search and optimization problems. It’s
inspired by the metaphor of climbing a hill to reach the highest point,
where the goal is to find the peak (the maximum or minimum value) of a
function.

Here is a simple analogy to help understand hill climbing:
Imagine you are standing on a mountain top. You want to find the

highest point on the mountain, but you can only move up or down. If you
are on a convex mountain, then hill climbing will eventually lead you to
the highest point. However, if you are on a non-convex mountain, then
hill climbing could lead you to a local peak, which is not the highest point
on the mountain.

To avoid getting stuck on a local peak, you could restart your climb
from a different starting point, or you could use a more complex algorithm
that takes into account the shape of the mountain.

The basic idea of the hill climbing algorithm is straightforward:

1. Start from a random or given initial solution.

111

2. Repeatedly make small improvements by changing the current solu-
tion slightly to reach a better solution.

3. Continue this process until no better solutions can be found or a
stopping criterion is met.

The algorithm operates under the assumption that moving in the direc-
tion of steepest ascent or descent (depending on whether you’re maximiz-
ing or minimizing) will lead to an optimal solution.

14.1. How it works

Let’s take the Traveling Salesman Problem (TSP) as an example.

Using a hill climbing approach, it is easy to find an initial solution that
visits all the cities, but it is likely to be poor compared to the optimal
solution. The algorithm starts with such a solution and makes small
improvements to it, such as switching the order in which two cities are
visited. Eventually, the algorithm is likely to obtain a much shorter route.

Here is an overview:

1. Initialize: Start from a random initial solution.

112

2. Generate Neighbors: Generate neighboring solutions by making
small, incremental changes to the current solution. We can achieve
this by following a specific procedure: first, duplicate the current
solution, and then perform a swap between two cities. This process
results in a slightly altered yet valid solution.

3. Evaluate: Calculate the objective function value (the value to be
optimized) which in our current case is the total distance of the
currently selected neighbors.

4. Select: Choose the neighboring solution with the best objective
function value. If it’s better than the current solution, move to the
selected neighbor. Otherwise, terminate the algorithm.

5. Repeat: Repeat steps 2 to 4 until a termination condition is met (e.g.,
a maximum number of iterations or no improvement for a specified
number of iterations).

Here is the plot depicting the overall optimization of the distance.

113

114

14.2. Implementation

import numpy as np

Function to create an adjacency matrix based

on Euclidean distances between points

def adjacency_matrix(coordinate):

matrix = np.zeros((len(coordinate), len(coordinate)))

Loop through each point

for i in range(len(coordinate)):

for j in range(i + 1, len(coordinate)):

Calculate Euclidean distance between

points i and j

p = np.linalg.norm(

coordinate[i] - coordinate[j])

Set distance in both positions of the matrix

(symmetric for undirected graph)

matrix[i][j] = p

matrix[j][i] = p

return matrix

Function to generate a random solution

(permutation of indices)

def solution(matrix):

return np.random.permutation(len(matrix))

Calculate total distance of the path in a solution

def total_distance_of_path(matrix, solution):

return sum(matrix[solution[i]][solution[i - 1]]

for i in range(len(solution)))

Generate neighboring solutions by swapping cities

def get_neighbors(solution):

neighbors = []

for i in range(len(solution)):

for j in range(i + 1, len(solution)):

115

neighbor = solution.copy()

Swap positions i and j

neighbor[i] = solution[j]

neighbor[j] = solution[i]

neighbors.append(neighbor)

return neighbors

Find the best neighbor based on the total

distance of the path

def best_neighbors(matrix, solution):

neighbors = get_neighbors(solution)

best_neighbour = neighbors[0]

best_route_length = total_distance_of_path(matrix,

best_neighbour)

for neighbour in neighbors:

current_route_length = total_distance_of_path(matrix,

neighbour)

if current_route_length < best_route_length:

best_route_length = current_route_length

best_neighbour = neighbour

return best_neighbour, best_route_length

Hill Climbing algorithm to find the shortest path

def hill_climbing(coordinate):

distance_matrix = adjacency_matrix(coordinate)

current_solution = solution(distance_matrix)

current_distance = total_distance_of_path(distance_matrix,

current_solution)

best_neighbor, best_neighbor_path = best_neighbors(

distance_matrix, current_solution)

Continue until the best neighbor has a

longer path than the current solution

while best_neighbor_path < current_distance:

current_solution = best_neighbor

current_distance = best_neighbor_path

print(current_distance)

116

16. Simulated Annealing

Imagine sculpting a perfect statue from a block of metal. You heat the
metal (representing high energy in the system) to a molten state, allowing
it to cool gradually (annealing). As it cools, the metal’s particles arrange
themselves in a low-energy state, minimizing defects and forming the
desired shape. Simulated Annealing operates similarly by exploring a
solution space. It accepts less optimal solutions early on (high energy) and
gradually refines them to reach an optimal or near-optimal solution (low
energy).

Simulated Annealing (SA) is a heuristic optimization technique inspired
by the annealing process in metallurgy, where metals are slowly cooled
to reach a state of minimum energy and reduce defects. SA mimics this
process to find optimal or near-optimal solutions in complex search spaces,
especially in combinatorial optimization problems[]

16.1. How it works:

135

1. Initialization: Start with an initial solution and set an initial tem-
perature and cooling rate. The initial solution can be generated
randomly or using a heuristic method.

2. Temperature Annealing: The algorithm operates in iterations,
each associated with a specific temperature. The temperature de-
creases over time according to a cooling schedule, which controls
the rate of exploration. Common cooling schedules include linear
and exponential cooling.

3. Perturbation: In each iteration, perturb the current solution to
generate a neighboring solution. The perturbation can involve small
changes to the current solution or more extensive modifications,
depending on the problem domain.

4. Evaluation: Calculate the cost or objective function value of the
current solution and the neighboring solution.

5. Acceptance: Decide whether to accept or reject the neighboring
solution based on the cost difference and the current temperature.
The Metropolis criterion is often used for acceptance:

• If the neighboring solution is better (lower cost), accept it.
• If the neighboring solution is worse (higher cost), accept it
with a certain probability, which decreases as the temperature
decreases. This probability is controlled by the Boltzmann
distribution formula.

6. Iteration: Repeat steps 3-5 for a predetermined number of itera-
tions or until a termination condition is met (e.g., reaching a target
temperature).

7. Termination: When the cooling schedule completes, return the
best solution encountered during the entire process as the output.

Key characteristics and considerations of Simulated Annealing include:

• Exploration vs. Exploitation: The algorithm balances exploration
(searching for new solutions) and exploitation (improving the current
solution).

136

• Global Optimization: Simulated Annealing can find global optima,
making it suitable for problems with complex, multi-modal solution
spaces.

• Stochastic Nature: The acceptance of worse solutions is controlled
by randomness, allowing the algorithm to escape local optima.

• Parameter Tuning: The choice of initial temperature, cooling
schedule, and acceptance probability function can significantly im-
pact the algorithm’s performance and convergence.

• Convergence: Simulated Annealing typically converges to an ap-
proximate solution as the temperature decreases.

16.2. The Traveling Salesman Problem (TSP) using
Simulated Annealing

One example problem that can be effectively solved using Simulated An-
nealing is the Traveling Salesman Problem (TSP). The TSP is a classic
optimization problem in which a salesperson is given a list of cities and
must find the shortest possible route that visits each city exactly once
before returning to the starting city, aiming to minimize the total distance
traveled.

137

Simulated Annealing can be applied to find a near-optimal solution for
the TSP by iteratively exploring different routes and gradually improving
the solution over time.

16.3. Simulated Annealing for TSP Problem:
Step-by-Step Guide

Step 1: Define Functions

• Distance function: distance(city1, city2): Calculates the Euclidean
distance between two cities.

distance(𝑐𝑖𝑡𝑦1, 𝑐𝑖𝑡𝑦2) = √(𝑐𝑖𝑡𝑦1.𝑥 − 𝑐𝑖𝑡𝑦2.𝑥)2 + (𝑐𝑖𝑡𝑦1.𝑦 − 𝑐𝑖𝑡𝑦2.𝑦)2

This formula computes the Euclidean distance between two points
(cities) in a two-dimensional space using their coordinates.

• Objective function: total_distance(tour, cities): Calculates the to-
tal tour length.

distance(𝑡𝑜𝑢𝑟 , 𝑐𝑖𝑡 𝑖𝑒𝑠) =
𝑛−1
∑
𝑖=1

distance(𝑐𝑖𝑡 𝑖𝑒𝑠[𝑡𝑜𝑢𝑟[𝑖]], 𝑐𝑖𝑡 𝑖𝑒𝑠[𝑡𝑜𝑢𝑟[𝑖 + 1]])

138

This formula calculates the total distance of a tour by summing the
distances between consecutive cities in the tour, where (n) represents
the number of cities in the tour.

Step 2: Initialize Parameters

• Initial temperature: initial_temperature (high value)
• Cooling rate: cooling_rate (between 0 and 1, controls temperature
decrease rate)

• Number of iterations: num_iterations (controls the number of times
the algorithm attempts to improve the solution)

• Number of cities: num_cities (determined by the problem)
• Current tour: current_tour (randomly chosen initial tour)
• Best tour: best_tour (initialized same as current_tour)
• Current temperature: current_temperature (set to initial_tempera-
ture)

Step 3: Loop for Iterations

for iteration in range(num_iterations):

Step 4: Perturb the Current Tour

• Randomly select two cities using random.sample(range(num_cities), 2)

• Swap their positions to create a new neighbor tour new_tour

Step 5: Calculate Cost Difference

• Calculate the total distance of the current tour: current_cost =

total_distance(current_tour, cities)

• Calculate the total distance of the new tour: new_cost =

total_distance(new_tour, cities)

• Calculate the difference in cost: delta_cost = new_cost - current_cost

Step 6: Accept or Reject New Tour

• If the new tour has a lower cost (improvement): delta_cost < 0

– Accept the new tour: current_tour = new_tour.copy()

– If the new tour has the best cost so far:

139

∗ Update the best tour: best_tour = new_tour.copy()

• Else (new tour has higher cost):

– Accept the new tour with probability P = math.exp(-delta_cost

/ current_temperature)

– If a random number between 0 and 1 is less than P, accept the
new tour, else keep the current tour.

Step 7: Update Temperature

• Reduce the temperature by multiplying it with the cooling rate:
current_temperature *= cooling_rate

Step 8: Repeat
Continue iterating through steps 4 to 7 until the maximum number of

iterations is reached or another stopping criterion is met.
Step 9: Output Results

• The best tour found during the iterations is stored in best_tour.
• The total distance of the best tour can be calculated using

total_distance(best_tour, cities).

Simulated Annealing allows the algorithm to explore a wide range of
possible tours, including suboptimal ones, while gradually reducing the
likelihood of accepting worse tours as the temperature decreases. This
exploration-exploitation trade-off helps in finding a good approximation
of the optimal TSP tour.

The TSP is just one example of a combinatorial optimization problem
that can be solved using Simulated Annealing. Simulated Annealing has
also been applied to various other optimization problems, including job
scheduling, parameter optimization in machine learning, and layout opti-
mization in integrated circuits, among others.

16.4. Implementation

Solving the Traveling Salesman Problem (TSP) using Simulated Anneal-
ing involves implementing the algorithm and creating a cost function to
evaluate tour lengths. Below is a Python program to solve the TSP using
Simulated Annealing:

140

import random

import math

import numpy as np

Define a class to represent a city with x and y coordinates

class City:

def __init__(self, x, y):

self.x = x

self.y = y

Define a function to calculate the Euclidean distance between two

cities↪

def distance(city1, city2):

return math.sqrt((city1.x - city2.x) ** 2 + (city1.y - city2.y) **

2)↪

Define the objective function to calculate the total tour length

def total_distance(tour, cities):

return sum(distance(cities[tour[i]], cities[tour[i + 1]])

for i in range(len(tour) - 1))

Simulated Annealing function to find the best tour

def simulated_annealing(cities,

initial_temperature,

cooling_rate,

num_iterations):

num_cities = len(cities)

Initialize a random tour

current_tour = random.sample(range(num_cities), num_cities)

best_tour = current_tour.copy()

current_temperature = initial_temperature

for iteration in range(num_iterations):

Perturb the current tour by swapping two random cities

new_tour = current_tour.copy()

141

i, j = random.sample(range(num_cities), 2)

new_tour[i], new_tour[j] = new_tour[j], new_tour[i]

Calculate the cost of the current and new tours

current_cost = total_distance(current_tour, cities)

new_cost = total_distance(new_tour, cities)

Decide whether to accept the new tour based on

cost and temperature

if (new_cost <

current_cost or random.random() <

math.exp((current_cost - new_cost) /

current_temperature)):↪

current_tour = new_tour.copy()

if new_cost < total_distance(best_tour, cities):

best_tour = new_tour.copy()

Reduce the temperature

current_temperature *= cooling_rate

return best_tour, total_distance(best_tour, cities)

Example usage

np.random.seed(1)

Generate array of random coodinates for city locations

coordinates = np.random.randint(0, 100, (20, 2))

cities = []

Build Cities coordinates with their coordinates (x, y)

for c in coordinates:

cities.append(City(c[0], c[1]))

Set Simulated Annealing parameters

initial_temperature = 1000.0

cooling_rate = 0.995

num_iterations = 10000

Solve the TSP using Simulated Annealing

142

best_tour, shortest_distance = simulated_annealing(cities,

initial_temperature,↪

cooling_rate,

num_iterations)

Print the best tour and its total distance

print("Best Tour:", best_tour)

print("Shortest Distance:", shortest_distance)

16.5. Visualization

• A random dataset of city coordinates

• The path found after simulated annealing

143

• Optimization over the iterations with cooling temperature approach-
ing 0 with each iteration

144

• View of the Optimizations over the iterations (Only picking a small
set)

145

16.6. Advantages:

• Global Optimization: Simulated Annealing is capable of finding
global optima in complex, multi-dimensional search spaces, making
it suitable for a wide range of optimization problems where finding

146

the exact solution is difficult.
• Robustness: It is robust and versatile, applicable to problems with
various objective functions, constraints, and irregular search spaces,
such as combinatorial optimization, scheduling, and parameter opti-
mization.

• Escape Local Optima: Unlike some local search algorithms, Sim-
ulated Annealing has the ability to escape local optima by proba-
bilistically accepting worse solutions during the early stages of the
search, allowing for exploration of the solution space.

• Parallelizable: SA can be easily implemented in a parallel manner,
allowing for faster computation on problems with large solution
spaces. This can significantly reduce the time required to find the
optimal solution.

• Controlled Exploration-Exploitation Tradeoff: The algorithm’s
temperature parameter controls the balance between exploration
and exploitation, allowing controlled exploration of the search space
in the early stages and gradual exploitation of better solutions as
the temperature decreases.

16.7. Limitations:

• Parameter Sensitivity: Simulated Annealing’s performance can
be sensitive to the choice of parameters, such as initial temperature,
cooling schedule, and the number of iterations, requiring careful
tuning for optimal results.

• Computationally Intensive: For complex problems or large search
spaces, Simulated Annealing might require a high number of itera-
tions to converge, making it computationally expensive compared
to some other optimization methods.

• SlowConvergence: It may converge slowly, especially in situations
where the temperature needs to decrease gradually to explore the
solution space adequately, resulting in longer execution times.

• Heuristic Nature: Being a heuristic method, there’s no guarantee
that Simulated Annealing will always find the optimal solution, and
the quality of the obtained solution might vary depending on the
problem instance and parameters chosen.

• Difficulty in Handling Constraints: Incorporating constraints
into Simulated Annealing can be challenging, especially in problems

147

with complex constraints, requiring specialized handling methods.

16.8. Applications

Simulated Annealing (SA) is a versatile optimization algorithm that has
gained widespread popularity due to its ability to effectively solve complex
problems with large state spaces. Its applications span across a wide range
of domains, including:
1. Combinatorial Optimization: SA is particularly well-suited for

solving combinatorial optimization problems, where the number of pos-
sible solutions is vast and exhaustive search is impractical. Examples
include:

• Traveling Salesman Problem (TSP): Finding the shortest route
for a salesman to visit all cities and return to the starting point.

• Graph Coloring: Assigning colors to vertices of a graph so that no
two adjacent vertices share the same color.

• Scheduling: Optimizing resource allocation and task scheduling in
production planning and project management.

2. Parameter Optimization: SA can be used to tune parameters in
various models and algorithms to improve their performance. For instance:

• Neural Network Training: Adjusting the weights and biases of a
neural network to minimize the error in prediction or classification
tasks.

• Control SystemOptimization: Tuning the parameters of a control
system to achieve desired performance and stability.

• Machine Learning Hyperparameter Optimization: Finding the
optimal values of hyperparameters in machine learning algorithms
to maximize their effectiveness.

3. Circuit Design: SA plays a crucial role in circuit design, particularly
in:

• Placement and Routing: Optimizing the placement of compo-
nents on a circuit board and routing connections between them to
minimize wirelength and power consumption.

148

• Analog Circuit Optimization: Tuning the parameters of analog
circuits to achieve desired performance characteristics, such as gain,
bandwidth, and power consumption.

4. Image Processing: SA has been successfully applied in image
processing tasks, including:

• Image Enhancement: Improving the quality of images by reducing
noise, sharpening details, and enhancing contrast.

• Image Restoration: Recovering degraded or corrupted images by
removing artifacts, distortions, or noise.

• Image Segmentation: Segmenting images into meaningful regions
or objects based on intensity, texture, or other image features.

5. Scientific Computing: SA finds applications in various scientific
computing areas, such as:

• Protein Folding: Predicting the three-dimensional structure of
proteins from their amino acid sequences, which is crucial for un-
derstanding protein function.

• Molecular Dynamics Simulations: Optimizing the parameters of
molecular dynamics simulations to accurately model the behavior
of molecules and materials.

• Computational Physics: Solving optimization problems arising in
physics, such as determining the optimal configuration of particles
in a system.

16.9. Bibliography

• P. Venkataraman Applied optimization with MATLAB pro-
gramming (Wiley) (2009)

• P. J. van Laarhoven & E. H. Aarts Simulated annealing: Theory
and applications (Springer Netherlands) (2013)

• S. Kirkpatrick et al. Optimization by simulated annealing, 220
Science 671–680 (1983), https://www.science.org/doi/abs/10.1126/
science.220.4598.671

149

https://www.science.org/doi/abs/10.1126/science.220.4598.671
https://www.science.org/doi/abs/10.1126/science.220.4598.671

18. Branch and Bound Algorithms

Suppose you have a set of items, each with its own specific weight and
value. You also have a knapsack with a maximum weight capacity of
15 kg. Your goal is to determine which combination of these items will
provide the highest total value without exceeding the weight limit of your
knapsack.

A brute force approach for finding the optimal solution involves gener-
ating all possible combinations, which in this case is 2𝑛 for n items. Each
combination’s total value is calculated, and the one selected as optimal
and feasible must satisfy two conditions:

• The total weight must be less than or equal to the knapsack’s capac-
ity.

• Among all feasible combinations, it must have the highest total
weight.

In this context, for 5 items, there are a total of 25 = 32 possible combi-
nations. The below constructed tree represents the decision tree for the
brute force approach. The left node of any node denotes that we picked
the item, and the right node denotes that we dropped the item.

167

As we can see, the search space for combinatorial optimization problems
(COPs) grows exponentially with higher input. This is why COPs are
also called NP Hard problems, meaning that they cannot be solved by a
polynomial-time algorithm. There are several non-brute force approaches
to solving COPs, including the greedy approach, dynamic programming,
and branch and bound.

18.1. Branch and Bound algorithm

The Branch and Bound algorithm is an optimization technique used to
solve combinatorial problems. Combinatorial problems involve making
selections or decisions from a finite set of possibilities, and the goal is to
find the best combination that optimizes a certain objective function. The
Branch and Bound algorithm systematically explores the search space to
find the best solution while avoiding inefficient or redundant evaluations.

Here’s how the Branch and Bound algorithm works:

1. Initialization: The algorithm starts with an initial solution, typi-
cally set to an empty or partial solution. It also initializes a lower
bound (usually set to negative infinity) and an upper bound (usually
set to positive infinity).

2. Branching: The algorithm divides the problem into smaller subprob-
lems, often by considering different choices or options. This creates
a branching structure similar to a tree. Each branch represents a
different possible decision.

3. Bounding: At each node of the tree, the algorithm computes an
upper and lower bound for the objective function. These bounds are
used to evaluate whether the node is worth further exploration. A
bound is an optimistic estimate of how good a partial solution (or
node) may be once completed; if it is not better than current best
solution then there is no need to evaluate the children of that node.

168

4. Pruning: The algorithm prunes (eliminates) nodes from the search
space if their bounds indicate that they cannot lead to a better so-
lution than the current best-known solution. This pruning helps
reduce the number of evaluations.

5. Selection: The algorithm selects the next node to explore based on
a specific strategy. Common strategies include choosing nodes with
the highest potential or nodes that are most promising according to
the bounds.

6. Exploration: The selected node is explored further by branching
into smaller subproblems. This process continues recursively until
the search space is fully explored or until a termination condition is
met.

7. Updating Bounds: As the algorithm explores the search space, it
updates the lower and upper bounds for the objective function based
on the solutions found so far.

8. Termination: The algorithm terminates when it has fully explored
the search space, and no further nodes can lead to a better solution,
or when a specific termination condition is met.

9. Optimal Solution: Once the algorithm completes, it returns the
best solution found during the search, along with its objective value.

Branch and Bound is widely used for solving various optimization prob-
lems, including the Traveling Salesman Problem, the Knapsack Problem,
and many others. Its key advantage is its ability to guarantee optimality,
ensuring that the solution found is indeed the best possible solution within
the search space. However, it can be computationally expensive for large
problem instances due to the need to explore an exponential number of
nodes.

18.2. How it works

Consider the knapsack problem with 𝑛 = 5, 𝑣 = [4, 2, 10, 1, 2], 𝑤 =
[12, 2, 4, 1, 1] and 𝑊 = 15, where

• 𝑛 denotes the number of items

169

• 𝑣 is an array of values
• 𝑤 is an array of weights
• 𝑊 denotes the knapsack capacity

Item Value Weight Value/Weight

P3 10 4 2.5
P5 2 1 2.0
P2 2 2 1.0
P4 1 1 1 .0
P1 4 12 0.33

Here is a tabular representation of our problem dataset. The last column
denotes value-to-weight ratio, an important ratio which allows for a greedy
approach, where you consider adding items to the knapsack in descending
order of their value-to-weight ratio. This means you prioritize items that
give you the most value for the least weight. So, as a pre-processing step,
we first sort all items by the value-to-weight ratio.

In the knapsack problem above, we are trying to maximize the value
given the constraint of maximum weight. This is a maximization problem,
so we need to find the upper bound at each step and prune the search tree.

𝑢𝑏 = 𝑣𝑖 + (𝑊 − 𝑤𝑖) ∗
𝑣𝑖+1
𝑤𝑖+1

where,

• 𝑣𝑖 represents the value of the item at index 𝑖

• 𝑤𝑖 represents the weight of the item at index 𝑖

• 𝑊 represents the knapsack capacity, and

• 𝑣𝑖+1
𝑤𝑖+1

represents the value-to-weight ratio of the next item.

170

We start with an empty knapsack.
The Upper bound at the root node
is

𝑢𝑏 = 0 + (15 − 0) ∗ 2.5 = 37.5

The value and weight at the root
node is 0 since we haven’t picked
any item yet.

Next we branch into two nodes,
the left one with the next item be-
ing picked into the knapsack and
the right node without the next
item. For the left node, we pick
𝑃3. We add it to our root and cal-
culate the upper bound.

𝑢𝑏 = 10 + (15 − 4) ∗ 2.0 = 32

For the right node, we do not pick
𝑃3 and calculate the upper bound
using the 𝑣/𝑤 ratio of the next
item, which is 𝑃5.

𝑢𝑏 = 0 + (15 − 0) ∗ 2.0 = 30

171

We have two upper bounds, we
pick the node with higher 𝑢𝑏 = 32
to continue the process. Now, we
branch again into two nodes, left
with 𝑃5 and right without 𝑃5

𝑢𝑏(𝑙𝑒𝑓 𝑡) = 12+ (15−5) ∗ 1.0 = 22

𝑢𝑏(𝑟 𝑖𝑔ℎ𝑡) = 10+(15−4)∗1.0 = 22

Next we pick the node whose up-
per bound is 30 as it is the highest
upper bound in the current tree
and expand from there.

𝑢𝑏(𝑙𝑒𝑓 𝑡) = 2+(15−1)∗1.0 = 16.0

𝑢𝑏(𝑟 𝑖𝑔ℎ𝑡) = 0+(15−0)∗1.0 = 15.0

172

The highest upper bound now is 22, so we expand that node.
𝑢𝑏(𝑙𝑒𝑓 𝑡) = 14 + (15 − 7) ∗ 1.0 = 22 𝑢𝑏(𝑟 𝑖𝑔ℎ𝑡) = 12 + (15 − 5) ∗ 1.0 = 22
—–

𝑢𝑏(𝑙𝑒𝑓 𝑡) = 15 + (15 − 8) ∗ 0.33 = 17.33
𝑢𝑏(𝑟 𝑖𝑔ℎ𝑡) = 14 + (15 − 7) ∗ 0.33 = 16.66

173

Post few iterations we reach a node whose capacity exceeds the knapsack
capacity, so we discard that node.

174

We keep running this process till we reach the end of the tree which is
𝐶𝑜𝑢𝑛𝑡(𝑖𝑡𝑒𝑚𝑠) and once we have reached the last item, we stop the
processing and return the best combination

18.3. Implementation

Solve the knapsack problem using the Branch and Bound

algorithm.

import heapq

175

class Item:

def __init__(self, name, value, weight):

self.name = name

self.value = value

self.weight = weight

if weight is 0, value_to_weight is also 0

self.value_to_weight = value / weight if weight != 0 else 0

class TreeNode:

def __init__(self, level, included_indexes):

self.level = level

self.included_indexes = included_indexes

self.priority = 0

self.upper_bound = 0

self.total_weight = 0

self.total_value = 0

def __lt__(self, other):

return self.priority < other.priority

class BranchAndBoundSolver:

def __init__(self, knapsack_capacity, items):

"""

Initialize the BranchAndBoundSolver.

Args:

max_weight (int): The maximum weight the knapsack can

hold.↪

items (list): The list of items to consider for the

knapsack problem.

"""

self.knapsack_capacity = knapsack_capacity

Sort the items based on their value-to-weight ratio in

descending order

Sorting items by value-to-weight ratio allows for a greedy

176

approach, where you consider adding items to the knapsack in

descending order of their value-to-weight ratio. This means

you↪

prioritize items that give you the most value for

the least weight.

self.items = sorted(

items, key=lambda el: el.value_to_weight, reverse=True)

self.items.insert(0, Item("0", 0, 0))

self.best_profit = 0

self.best_combination = []

def build_tree_node(self, level, included_indexes):

node = TreeNode(level, list(set(included_indexes)))

node.total_weight = self.total_weight_of(included_indexes)

node.total_value = self.total_value_of(included_indexes)

node.upper_bound = self.get_upper_bound(node)

Priority of a node to be picked is decided by the

upper bound of the current set of element in this

branch. -1 is multiplied here is to pick the largest from

the↪

priority queue

node.priority = -1 * node.upper_bound

return node

def total_weight_of(self, included_indexes):

return sum(

self.items[index].weight

for index in included_indexes

if index < len(self.items) - 1

)

def total_value_of(self, included_indexes):

return sum(

self.items[index].value

for index in included_indexes

if index < len(self.items) - 1

177

)

def solve(self):

"""

Solve the knapsack problem using the Branch and Bound

algorithm.

Returns:

list: The best solution found for the knapsack problem.

"""

priority_queue = []

First an empty/dummy node

start_node = self.build_tree_node(0, [])

heapq.heappush(priority_queue, start_node)

while priority_queue:

current_node = heapq.heappop(priority_queue)

Get out of this loop if reached limit of

elements in terms of tree levels.

if current_node.level == len(self.items) - 1:

break

if self.is_infeasible(current_node):

continue

print(f"upper_bound:{current_node.upper_bound}")

print(f"items:{current_node.included_indexes}")

print(f"profit:{current_node.total_value}")

print(f"weight:{current_node.total_weight}")

print(f"best profit:{self.best_profit}")

if the total value of items added till now exceeds

the tracked best profit then update the optimal best

solution

if current_node.total_value > self.best_profit:

self.best_profit = current_node.total_value

178

self.best_combination = current_node

print("\n")

next_level = current_node.level + 1

left_node = self.build_tree_node(

next_level, current_node.included_indexes +

[next_level]↪

)

heapq.heappush(priority_queue, left_node)

right_node = self.build_tree_node(

next_level, current_node.included_indexes)

heapq.heappush(priority_queue, right_node)

return self.get_best_solution()

def get_upper_bound(self, node):

"""

Calculate the upper bound of a given node.

Args:

node (TreeNode): The node for which to

calculate the upper bound.

Returns:

int: The upper bound of the node.

"""

value = self.total_value_of(node.included_indexes)

weight = self.total_weight_of(node.included_indexes)

if node.level == len(self.items) - 1:

this means we just encountered an end node, so we add

a zero value item to stop further deep processing.

next_element = Item("END", 0, 0)

else:

next_element = self.items[node.level + 1]

179

bound = value + (self.knapsack_capacity - weight) * \

next_element.value_to_weight

return bound

def is_infeasible(self, node):

If the upper bound of the current node is less than our

best profit or if the total weight included till now

is greater than the allowed maximum weight then discard

this branch

return (

node.upper_bound < self.best_profit

or node.total_weight > self.knapsack_capacity

)

def get_best_solution(self):

return self.best_profit

def included_items(self):

return [self.items[i] for i in

self.best_combination.included_indexes]↪

capacity = 15

items = [

Item("P1", 4, 12),

Item("P2", 2, 2),

Item("P3", 10, 4),

Item("P4", 1, 1),

Item("P5", 2, 1),

]

solver = BranchAndBoundSolver(knapsack_capacity=capacity, items=items)

print("Maximum Profit:", solver.solve())

print("Included Items")

for item in solver.included_items():

print(f"Product {item.name}: profit= {item.value},

weight={item.weight}")↪

180

"""

Maximum Profit: 15

Included Items

item P3: profit= 10, weight=4

item P5: profit= 2, weight=1

item P2: profit= 2, weight=2

item P4: profit= 1, weight=1

"""

Branch and Bound (B&B) algorithms offer several advantages for solving
optimization problems, but they also come with certain limitations:

18.4. Advantages:

• Optimality Assurance: B&B algorithms guarantee finding the op-
timal solution (if it exists) for problems where a finite set of potential
solutions can be enumerated and pruned.

• Efficient for Discrete Optimization: Particularly effective for
discrete or combinatorial optimization problems, including integer
programming, TSP, and other NP-hard problems, by systematically
exploring the solution space.

• Reduction of Search Space: They intelligently prune branches
of the search tree by bounding and eliminating regions that cannot
contain an optimal solution, reducing the search space.

18.5. Limitations:

• Exponential Complexity: The time complexity can grow expo-
nentially with problem size, making B&B algorithms impractical for
large-scale problems due to exhaustive search requirements.

• Memory Intensive: For problems with large search spaces, storing
and managing nodes in the search tree can consume significant
memory resources.

• Difficulty in Tight Bounds: Obtaining tight upper and lower
bounds for pruning branches might be challenging, leading to less

181

effective pruning and increased computation.
• Inaccuracy with Heuristics: The use of heuristics might affect
optimality, as heuristic-driven pruning could skip potential optimal
solutions.

18.6. Applications

Branch and Bound (B&B) algorithms are widely applied in various domains
due to their ability to solve optimization problems efficiently by system-
atically searching through the solution space. Some notable applications
include:

• Combinatorial Optimization: B&B methods are extensively used
in solving combinatorial optimization problems like the Traveling
Salesman Problem (TSP), Knapsack Problem, Graph Coloring, and
Job Scheduling, aiming to find the best arrangement or selection
from a discrete set of options.

• Operations Research: In operations research, B&B algorithms aid
in solving linear programming, integer programming, and mixed-
integer programming problems. They efficiently explore feasible
solutions while pruning branches that cannot lead to better solutions.

• Resource Allocation and Scheduling: B&B techniques are uti-
lized in resource allocation tasks, such as task scheduling in project
management, workforce scheduling, and resource allocation in man-
ufacturing or production processes.

• Network Design and Routing: B&B algorithms play a crucial role
in network design problems like facility location, network routing,
and optimal pathfinding in transportation and logistics networks.

• Optimal Control and Robotics: B&B techniques are used in opti-
mal control problems, trajectory optimization, motion planning in
robotics, and autonomous systems to find the most efficient paths
or actions.

• Circuit Design: B&B algorithms contribute to circuit design op-
timization by optimizing layouts, placement of components, and
routing in integrated circuits, leading to more efficient and compact
designs.

• Machine Learning and AI: In some cases, B&B approaches are
integrated into machine learning algorithms for solving optimiza-

182

tion tasks, feature selection, hyperparameter tuning, and model
optimization.

• Game Theory: B&B methods are employed in game theory for
solving games with imperfect information, like solving game trees
in AI for games like chess, checkers, and Go.

18.7. Bibliography

• J. D. C. Little Branch and bound methods for combinatorial
problems (LEGARE STREET Press) (2023)

• S. Martello & P. Toth Knapsack problems: Algorithms and
computer implementations (Wiley) (1990)

183

19. Beam search

Beam search is a heuristic search algorithm, a variant of breadth first search
designed in such a way that it only explores a limited set of promising paths
or solutions in a search space instead of all possible paths, which is often
computationally expensive. It is used in the field of artificial intelligence,
particularly in the context of search and optimization problems. The main
difference between BEAM search and breadth-first search is that at every
level of the search tree, only the top 𝛽 candidates are chosen for further
exploration. Here, 𝛽 is known as the beam width. The reasoning behind
this is that a path from source to destination is likely to pass through some
top number of most promising nodes. This leads to an algorithm that
is fast and memory-efficient because it can disregard many nodes that
may appear to be too far from the goal. An evaluation function is used to
evaluate the candidacy of nodes for further exploration.

Here is an analogy that may help you better understand beam search:
Imagine trying to find the shortest path from your house to a grocery

store. You start by walking in the direction you think will lead you there,
keeping track of different paths as you walk. At each intersection, you
consider the available options and choose the one most likely to lead you
to the store. Beam search is a search algorithm that works similarly. It
only keeps track of a limited number of paths at each iteration.

If the beam width is too small, the algorithm may not find the best path.
Conversely, if the beam width is too large, the algorithm may use too much
memory. This renders the algorithm incomplete, meaning that finding
the shortest path is not guaranteed. Beam search is suitable for problems
where an exact solution is not required, and a good approximation is
sufficient.

184

The trade-off between beam width and solution quality is crucial in
beam search. A narrower beam focuses on the best candidates but may
miss global optima. A wider beam explores a larger portion of the search
space but may spend more time on unpromising paths. The choice of beam
width depends on the specific problem and the desired trade-off between
speed and solution quality.

19.1. How it works:

Beam search uses an open set prioritized based on the total cost and a
closed set to keep track of visited nodes. The algorithm begins with a start
node S, which also serves as the root node for the search tree.

1. Initialize a search tree with the root node being the start node S.
2. Add S to the closed set and evaluate all successors of node S.
3. Select the top 𝛽 (beam width) nodes and add them as children to S

in the tree. Ignore all other nodes.
4. Add the selected nodes to the open set for further exploration.
5. Remove all nodes in the open set. Once a node is removed for

exploration, add it to the closed set.
6. Evaluate all adjacent nodes and sort them according to the evaluation

function.
7. Select the top 𝛽 nodes and add them to the tree, adding them as

children of their respective parent nodes.
8. Repeat this process until the goal node G is found in the open set,

indicating that a path has been found.

19.2. Implementation

Below is a Python program that demonstrates the Beam Search algorithm
to find the shortest path in a weighted graph from a start node to a goal
node with a specified beam width.

import queue

def beam_search(graph, start, goal, beam_width):

open_set = queue.PriorityQueue()

185

open_set.put((0, start))

closed_set = set()

A dictionary to represent the search tree

search_tree = {start: None}

while not open_set.empty():

print(open_set.queue, closed_set)

current_cost, current_node = open_set.get()

if current_node == goal:

Goal reached, reconstruct and return the path

path = []

while current_node is not None:

path.insert(0, current_node)

current_node = search_tree[current_node]

return path

closed_set.add(current_node)

successors = graph[current_node]

successors.sort(key=lambda x: x[1]) # Sort successors by cost

for successor, cost in successors[:beam_width]:

if successor not in closed_set:

open_set.put((current_cost + cost, successor))

search_tree[successor] = current_node

If goal not reached

return None

Example graph represented as an adjacency list with costs

graph = {

'A': [('E', 4), ('C', 2), ('I', 4)],

'B': [],

'C': [('F', 1), ('G', 2), ('H', 8)],

'D': [('B', 2)],

'E': [('F', 2), ('C', 2), ('H', 5)],

'F': [('H', 4), ('G', 1)],

186

'G': [('D', 3)],

'H': [('B', 6)],

'I': [('H', 3)]

}

start_node = 'A'

goal_node = 'B'

beam_width = 2 # Adjust the beam width as needed

path = beam_search(graph, start_node, goal_node, beam_width)

if path:

print("Shortest Path:", ' -> '.join(path))

else:

print("No path found.")

187

19.3. Visualization
We start with an empty closed set
and add the starting node to the
priority queue.

closed: []
cost node
0 A

From A, node I, C and E are reach-
able with cost 4, 4, 2 respectively.
Since our beamwidth is 2, we pick
the top 2 nodes C and E and add
them to our priority queue. We
markA as visited by addind it into
the closed set.

closed: [A]
cost node
2 C
4 E

188

Top of the queue we have C, so
we add C to the closed set and
continue to look for the next 2 top
nodes. For the next nodes F and G,
the costs are 3 and 4 respectively. closed: [C, A]

cost node
3 F
4 E
4 G

Top of the queue we have F,
so we add F to the closed
set and continue to look for
the next 2 top nodes. For
the next nodes H and G, the
costs are 7 and 4 respectively.

closed: [F, C, A]
cost node
4 E
4 E
4 G
7 H

189

closed: [E, F, C, A]
cost node
4 E
4 G
7 H

closed: [E, C, A, G, F]
cost node
4 G
7 H
7 D

closed: [E, C, A, G, F]
cost node
7 D
7 H
7 D

190

closed: [D, E, C, A, G, F]
cost node
7 D
7 H
9 B

closed: [D, E, C, A, G, F]
cost node
7 D
9 H
9 B

We stop when we reach the goal
and print the path. A -> C -> F ->
H -> B

closed: [D, E, C, A, H, G, F]
cost node
9 B
9 B
13 B

19.4. Time Complexity Analysis

The time complexity of Beam Search depends on several factors, including
the size of the search space, the characteristics of the problem, and the
chosen beam width. Let’s break down the time complexity analysis:

191

1. Search Space Size 𝑁:

• Beam Search explores a limited set of candidates at each level,
controlled by the beam width 𝛽. The number of nodes at each
level that need to be considered is 𝑂(𝛽).

2. Depth of the Search Tree 𝐷:

• The depth of the search tree depends on the distance from
the start node to the goal node. Let’s denote the depth of the
optimal solution as 𝐷∗.

3. Overall Time Complexity:

• The overall time complexity of Beam Search is approximately
𝑂(𝛽𝐷∗).

4. Comparison with Other Algorithms:

• Compared to uninformed search algorithms like breadth-first
search, which has a time complexity of 𝑂(𝑏𝐷), where 𝑏 is the
branching factor, Beam Search can be more efficient when 𝛽
« 𝑏. However, it may be less efficient when 𝛽 approaches or
exceeds 𝑏.

5. Influence of Heuristic Evaluation:

• If a heuristic function is used to guide the search, the time
complexity is influenced by the efficiency and accuracy of the
heuristic. A more effective heuristic can significantly reduce
the number of nodes explored.

6. Best, Worst, and Average Case:

• The best-case scenario occurs when the goal is found early in
the search, leading to a time complexity close to 𝑂(𝛽). The
worst-case occurs when the goal is at the maximum possible
depth, resulting in a time complexity of 𝑂(𝛽𝐷). The average-
case time complexity is challenging to determine precisely and
depends on the characteristics of the problem.

7. Time Complexity in Practice:

192

• In practice, the efficiency of Beam Search often depends on the
ability to find good solutions quickly with a limited beamwidth.
The algorithm’s performance can be sensitive to the choice of
the beam width and the characteristics of the problem.

19.5. Advantages

• Efficient: Beam search is a very efficient search algorithm, especially
for large and complex problems. This is because beam search only
explores a limited number of paths at each iteration.

• Flexible: Beam search can be used to find a variety of different
types of solutions, including optimal solutions, suboptimal solutions,
and constrained solutions.

19.6. Limitations

• Incompleteness: Beam search is not a complete search algorithm,
which means that it may not always find a solution to a problem,
even if a solution exists. This is because beam search only explores
a limited number of paths at each iteration.

• Sensitivity to beam width: The performance of beam search is
sensitive to the choice of beam width. A too small beam width may
cause the algorithm to miss the optimal solution, while a too large
beam width may make the algorithm inefficient.

19.7. Applications

Beam search is a powerful algorithm with a wide range of applications
across various domains. Here are some of the most common applications:
Natural language processing (NLP):

• Machine Translation: Beam search is widely used in machine
translation to decode the output sequence word by word. It allows
the model to explore different translation options and choose the
most likely one based on the context and the overall translation
quality.

• Text Summarization: Beam search can be used to summarize text
by generating a shorter version that captures the main points of the

193

original text. The algorithm can be used to find the most concise
and informative summary that retains the key ideas.

• Dialogue Systems: Beam search is employed in dialogue systems to
generate responses that are relevant to the conversation history and
user intent. It allows the system to explore different response options
and choose the one that best fits the context and user expectations.

Computer Vision:

• Image Captioning: Beam search can be used to generate captions
for images. It allows the model to consider different interpretations
of the image and generate captions that are relevant and descriptive.

• Object Detection and Recognition: Beam search can be used to
detect and recognize objects in images. It helps the model identify
multiple objects and their positions within the image by exploring
different potential detections and selecting the most likely ones.

• Video Captioning: Beam search can be used to generate captions
for videos by analyzing the video content and generating summaries
that capture the key events and actions.

Speech Recognition:

• Automatic Speech Recognition (ASR): Beam search is applied
in ASR systems to translate speech signals into text. It allows the
system to consider different possible interpretations of the speech
and select the one that best matches the acoustic signal and the
linguistic context.

• Speaker Diarization: Beam search can be used to identify and
segment speech from different speakers in a recording. It helps the
system distinguish between multiple voices and assign each speaker
their corresponding segments.

19.8. Bibliography

• Markus Freitag & Yaser Al-Onaizan Beam search strategies for neural
machine translation, abs/1702.01806 CoRR (2017), http://arxiv.org/
abs/1702.01806

• Sina Zarrieß et al. Decoding methods in neural language genera-
tion: A survey, 12 Information 355 (2021), http://dx.doi.org/10.3390/
info12090355

194

http://arxiv.org/abs/1702.01806
http://arxiv.org/abs/1702.01806
http://dx.doi.org/10.3390/info12090355
http://dx.doi.org/10.3390/info12090355

• Oriol Vinyals et al. Show and tell: A neural image caption generator,
abs/1411.4555 CoRR (2014), http://arxiv.org/abs/1411.4555

• Improvements in beam search for 10000-word continuous speech recog-
nition, 1 in [Proceedings] ICASSP-92: 1992 IEEE international
conference on acoustics, speech, and signal processing 9–12
vol.1

• Stefan Ortmanns & Hermann Ney Look-ahead techniques for fast
beam search, 14 Computer Speech & Language 15–32 (2000), https:
//www.sciencedirect.com/science/article/pii/S0885230899901316

• Clara Meister et al. Best-first beam search, 8 Transactions of
the Association for Computational Linguistics 795–809 (2020),
https://aclanthology.org/2020.tacl-1.51

195

http://arxiv.org/abs/1411.4555
https://www.sciencedirect.com/science/article/pii/S0885230899901316
https://www.sciencedirect.com/science/article/pii/S0885230899901316
https://aclanthology.org/2020.tacl-1.51

Index

𝑂(1 + 𝛼), 106
𝑂(1), 85, 107
𝑂(𝐸 ∗ 𝑙𝑜𝑔(𝑉)), 344
𝑂(𝑉 + 𝐸), 257
𝑂(𝑉 2), 344
𝑂(𝑏), 52
𝑂(𝑏𝐷), 192
𝑂(𝑙𝑜𝑔(𝑛)), 60, 66, 71
𝑂(𝑙𝑜𝑔3𝑛), 39
𝑂(𝑚), 439
𝑂(√𝑛), 47

A* Search, 304
ACO, 204
Anomaly Detection, 230
Ant Colony Optimization, 204
Approximate String Matching,

410, 414
Arrays, 416
Auto-completion, 371
Autocompletion, 440
Autocorrection, 414

Backpropagation, 121
Bad Character rule, 373
Ball Trees, 226
Beam search, 184
Big O Notation, 22
Binary search, 34
Bloom Filter, 87
Boyer-Moore, 373

Branch and Bound, 167
Burrows-Wheeler Transform

(BWT), 371

Cluster Analysis, 346
Collaborative Filtering, 230
Common Notations, 23
Compiler Design, 395
Constant Time, 26
Constant-Time, 94
Cost function, 304
Cuckoo Filter, 96
Cuckoo hashing, 97
Curse of Dimensionality, 227

Data Compression, 371
Data Deduplication, 414
Decay Rate, 206
Depth First Search, 241
Depth-First Search, 197
Detecting Negative Cycles, 353,

362
Dictionaries, 37
digital tree, 432
Dijkstra’s algorithm heuristic,

305
distributed systems, 64

Euclidean distance, 305
Exponential Search, 60
Exponential Time, 27

470

Fibonacci Search, 66
Fingerprint, 107
Fraud Prevention, 230
Fuzzy String Matching, 414

Game playing, 202
Genome Sequencing, 371
Good Suffix rule, 373

Hash Collisions, 82
Hash Table Search, 82
Hashing, 396
Heaps, 426
Heuristics Function, 304
Hill Climbing, 111

IDDFS, 196
Image Segmentation, 346
Indexed Sequential Search, 48
Interpolation Search, 54
ISAM, 48
Iterative Deepening, 197
Iterative Deepening Depth-First

Search, 196

Jump Search, 44

K-D Trees, 219
KMP, 385
Knuth-Morris-Pratt, 385

Large sorted datasets, 64
Levenshtein distance, 405
Linear search, 30
Linear Time, 26
Linearithmic Time, 27
Linked Lists, 421
Load Factor, 107
Locality-Sensitive Hashing, 227
Log File Analysis, 52

Logarithmic Time, 26
Longest Common Substring, 371
Longest Prefix Suffix, 385

Manhattan distance, 305
Maze solving, 202
MCTS, 120
Minimizing Cost Functions, 43
minimum spanning tree, 339
Monte Carlo Tree Search, 120
MST, 339

Natural language processing, 134,
193, 315

Nearest Neighbor Search, 216
Network Design, 346
NLP, 134, 193, 315
NP (Nondeterministic Polyno-

mial Time), 27
NP-Completeness, 27

O(log(n)), 37
O(n), 32
OCR Error Correction, 414

P (Polynomial Time), 27
Parallel Processing, 94
Pattern Matching, 371
Peak Finding, 43
Pheromone Matrix, 205
Phone Number Lookup, 441
Plagiarism Detection, 413
Prefix Matching, 433
prefix tree, 432
Prim’s Algorithm, 339
Python, 455
Python Arrays, 460
Python Conditional statements,

458
Python Data types, 458

471

Python Dictionary, 462
Python Functions, 464
Python Language Basics, 458
Python Lists, 461
Python Loops, 459
Python Math Operators, 463
Python Sets, 461
Python Variables, 458

Quadratic Time, 27
Queues, 423

Rabin-Karp Algorithm, 396
Recommendation Systems, 230
Robotics, 133, 281, 302
robotics, 315
Rolling Hash, 396

Searching Database Archives, 52
Simulated Annealing, 135, 150
Spell checkers, 94
Spell Checking, 409, 413, 440
Stack, 429
String Matching, 395
Substring Search, 371
Suffix Array, 364
Symbol Tables, 37

Tabu search, 150
Ternary search, 39
Ternary Search Tree, 442
Text Search, 395, 441
Tic-Tac-Toe, 122
Time Complexity, 22
Traveling Salesman Problem, 112,

205
Trie, 432
Trie search, 432
TSP, 205
TST, 442

Unbalanced Trees, 228
unbounded, 64
unknown-sized arrays, 64

472

	Introduction
	Book Organization
	Code Samples

	Setting up the python enviroment
	Online resources

	Time Complexity of Algorithms
	Big O Notation
	Common Notations
	Calculating Time complexity
	Demystifying Logarithmic Time complexity
	Common Time Complexities
	NP and P
	Bibliography

	Basic Search Algorithms
	Linear search
	How it works
	Implementation
	Time Complexity Analysis
	Advantages
	Limitations
	Applications
	Bibliography

	Binary Search
	How it works
	Implementation
	Time Complexity Analysis
	Advantages
	Limitations
	Applications
	Bibliography

	Ternary Search
	How it Works
	Implementation
	Time Complexity Analysis
	Applications
	Bibliography

	Jump Search
	How it Works
	Implementation
	Time Complexity Analysis
	Advantages
	Limitations
	Applications
	Bibliography

	Interpolation Search
	How it works
	Implementation
	Time Complexity Analysis
	Advantages and Limitations
	Applications
	Bibliography

	Exponential Search
	How it works
	Implementation
	Time Complexity Analysis
	Advantages
	Limitations
	Applications
	Bibliography

	Fibonacci Search
	How it works
	Implementation
	Time Complexity Analysis:
	Advantages
	Limitations
	Applications
	Bibliography

	Hash-Based Search
	Basics
	Hash table
	How Hashing Works
	Types of Hash Functions
	Hash Collisions
	Bibliography

	Hash Table Search
	How it works
	Implementation
	Time Complexity Analysis
	Advantages
	Limitations
	Applications
	Bibliography

	Bloom Filter
	How it Works
	Implementation
	Visualization
	Time complexity Analysis
	Advantages
	Limitations
	Applications
	Bibliography

	AI Search Algorithms
	Hill Climbing Algorithm
	How it works
	Implementation

	Simulated Annealing
	How it works:
	The Traveling Salesman Problem (TSP) using Simulated Annealing
	Simulated Annealing for TSP Problem: Step-by-Step Guide
	Implementation
	Visualization
	Advantages:
	Limitations:
	Applications
	Bibliography

	Branch and Bound Algorithms
	Branch and Bound algorithm
	How it works
	Implementation
	Advantages:
	Limitations:
	Applications
	Bibliography

	Beam search
	How it works:
	Implementation
	Visualization
	Time Complexity Analysis
	Advantages
	Limitations
	Applications
	Bibliography

