
Frankenstein: Advanced Wireless Fuzzing to Exploit New Bluetooth
Escalation Targets

Jan Ruge and Jiska Classen, Secure Mobile Networking Lab, TU Darmstadt; Francesco Gringoli,
Dept. of Information Engineering, University of Brescia; Matthias Hollick, Secure Mobile

Networking Lab, TU Darmstadt

Writer: Akib Jawad Nafis

1 Introduction

Radio frequency protocols or implementations have always been a huge target for attackers. The
reason behind this would be a huge attack surface. An attacker can attack wireless protocols even
before it is connected to the network. Most of the wireless protocol implementation is closed source.
As a result fuzzing became the best way to find bugs in these implementations. Protocol fuzzing
over the air is pretty slow. We have to depend on the wireless transmission time. At the same time
there can be interference while fuzzing over the air. Dependency on physical devices, limitation
while repeating an experiment, complexity in debugging also contributes to the issues of over the
air fuzzing. Making the wireless fuzzing faster at the same time less clunky is a great research
problem.

1.1 Wireless Fuzzing of Bluetooth

One of the most widely used RF protocol implementation would be Bluetooth. Almost all of the
smartphones and portable computers today has a Bluetooth chip in it. At the same time security
of Bluetooth has always been kind of questionable. Bluetooth stack is divided on two parts. Host
(Operating System of the device holding that Bluetooth chip) and Bluetooth Controller chip. These
two in connected with a layer named HCI (Host Controller Interface). Software in the Bluetooth
controller chip is called firmware. Firmware of a Bluetooth chip or any wireless chip is closed source.
Hence it is hard to debug but vulnerabilities residing in the firmware can be catastrophic. At the
same time fixing those vulnerabilities after deployment is another huge problem. Because firmware
resides in ROM chip of the hardware, not easy to update. Fix have to come the chip vendor itself.
Some vulnerability in the firmware can be remain hidden even from the operating system. As some
portion of the Bluetooth hardware doesn’t require any kind of interaction with the host stack. So
fuzzing the Bluetooth firmware to find out bugs before an attacker choose to exploit them is a great
idea. Combining these with the idea to improve over the air fuzzing is our goal in this project. We
choose broadcom Bluetooth firmware to fuzz as it is widely used.

1.2 Prior Work

Fuzzing Bluetooth protocol has been mostly limited to fuzzing the host stack. Bluetooth Firmware
has not been fuzzed public prior to this work. Prior to this Bluetooth Firmware research was mostly
about extending the capability of the chip. There were research about security of the Bluetooth
Firmware but it was manual analysis. btlejack [btlejack] extends capability of the BLE at the
same describing man in the middle attack. InternalBlue [DBLP:journals/corr/abs-1905-00631]
used reverse engineering of Bluetooth Firmware to read/manipulate low layer frames. It also dis-
covers a bug in the Broadcom chip. Over the air fuzzing has been done in deepsec [deepsec]
but it focuses on host part of the Bluetooth stack. Other fuzzing efforts was based on drivers

1

and operating systems. Syzkaller[syzkaller] supports fuzzing HCI in linux. Apart from broad-
com chip, Marvel Avastar[marvel-avastar] WiFi chip was fuzzed using afl-unicorn[afl-unicorn].
TriforceAFL[TriforceAFL] uses similar QEMU based fuzzing but it modify the QEMU itself for
other supports. On the other hand Frankenstein here uses QEMU as a userspace program for
support it uses hooking the firmware. LTEFuzz [8835363] fuzzes LTE network over the air and
found vulnerabilities in core network components.

2 Approaches Taken

To solve problems of the over the air fuzzing authors took a new approach. It is emulating the
firmware to create a virtual chip. By emulation authors reduce latency from host to chip commu-
nication. They didn’t have to depend on another chip to send packets over the air. They were able
to cut down the transmission time by generating packets in the device itself. Emulated virtual chip
can be connected to the Bluetooth host side of linux system. Thus creating a full system emulation
environment.

Figure 1: Emulation Based Fuzzing

2.1 Emulating the firmware

Authors pulled snapshot from the physical device and then used it as a firmware to emulate in
QEMU. But a snapshot can’t be directly emulated. It is just a binary. A elf executable file must be
generated to execute it in the QEMU environment. That elf executable need some more support.

This frankenstein will run as a user-space program it doesn’t support any interrupt or timer
itself. But Bluetooth firmware has it’s own interrupt and timer handlers. These interrupt and timer
handlers need to be implemented manually for the virtual chip. It could have been done in the
QEMU itself, but then that QEMU emulation will not be user-mode emulation. Along with this
support debug symbols and coverage hooks must be included in the firmware for fuzzing. Including
all of those a virtual chip is generated.

2

2.2 Connecting Virtual Chip to the Host

To connect this virtual chip to the linux host Pseudo Terminal is used. Pseudo terminal is basically
a pipe to connect two programs. Master end of the pipe belongs to the virtual chip and slave end
of the pipe belongs to the host side of Bluetooth stack.

2.3 Random packet generation

To generate inputs packets for the firmware a virtual modem is created. Virtual modem creates
various types of packet to trigger various portion of the firmware codebase.

2.4 Mutating inputs while generating inputs

Frankenstein uses a different type of mutation techniques. Typical fuzzers uses input as a large
binary object and modify it. Frankenstein modified this process slightly. Instead of considering
whole packet as a binary object, it took two parts of the packet (Sequence No and Data) and
modified them separately. This method results in better code coverage[??]. Classic blob (grey line)

Figure 2: Code coverage

represents mutation of the packet as a binary blob. Packet Level (red line) is modification to packet
data only. Packet Level with BlueZ includes mutation of both sequence no and packet data.

2.5 Evaluation based of bugs found

Frankenstein discovered two types of bug in the Bluetooth firmware. One is Remote Code Execution
based and another is heap corruption based. Types of Bugs and their CVEs are included in the
list below.

2.6 Evaluation based on novelty and speed

Since it is the first systemic approach to find bugs in the bluetooth firmware via emulation based
fuzzing, it has novelty in it. Also it increases efficiency than over the air fuzzing.

3

RCE bugs Heap Corruption Bugs

Link Key Extraction. Device Scanning EIR (CVE-2019-
11516).

Disabling Wifi by writing a specified
value while testing in a wifi/bluetooth
combo chip. (CVE-2019-15063).

Any BLE Packet (CVE-2019-13916).

Any ACL Packet (CVE-2019-18614).

BlueFrag (CVE-2020-0022).

Table 1: Vulnerabilities and CVE’s found by frankenstein

3 Deliverable

Two types deliverable while reproducing this work.

• Reproducing their emulations.

• Reproducing CVE using the emulator.

3.1 Reproducing their emulations

Systemwise build will generate 8 emulations. Emulating all modules will be time consuming. I’ll

Figure 3: emulations

try to emulate and report my finding form the execute.exe, heap.exe, hci attach.exe, inqfilter.exe,
lmp fuzz.exe, acl fuzz.exe. [It might change since I don’t know which emulation takes how much
time]

3.2 Reproducting CVEs

I will reproduce two CVEs.

• Device Scanning EIR (CVE-2019-11516)

4

• Any BLE Packet (CVE-2019-13916)

I won’t be able to to reproduce some of the CVE’s due to device constraint.

• Any ACL Packet (CVE-2019-18614) [Reproducing this experiement bricked a module of au-
thors. Also lack of time :(]

• BlueFrag (CVE-2020-0022). [Need an Android 8.0-9.0 device wth this specific bluetooth chip
to follow the steps.]

• Disabling Wifi by writing a specified value while testing in a wifi/bluetooth combo chip.
(CVE-2019-15063) [It’s done on wifi/bluetooth combo chip. I don’t have any neither physical
nor virtual.]

4 Experiments

As per proposal I emulated 5 of the 8 emulations mentioned in the project. Also reproduced
two CVEs from this project. Initially I’ll describe experimental setup. Then I’ll go through the
emulations. Later I’ll describe how CVE’s are reproduced and what triggered those bugs.

4.1 Experimental Setup

Authors goal was to execute Bluetooth firmware in a virtual environment so that they can fuzz
the firmware easily. To do this, authors copied all the memory segments of a running firmware.
Authors copied the memory segment with a script. Authors provided memory segments of the
firmware CYW20735 Bluetooth evaluation board. Patched the firmware to execute it without the
actual hardware. A hooking mechanism which mainly use c-construct is used for patching process.
Then run the virtual firmware to test various portion of the firmware. To check various portion of
the firmware authors created multiple emulations which will execute in the virtual environment.

4.2 Emulation: execute.exe

In this emulation authors simply confirmed they can interact with virtual firmware executing in
QEMU. They also confirmed firmware is executing it’s three threads(bttransport, lm and idle)
correctly. When both bttransport and lm thread is waiting for events firmware will moe to idle
thread. When firmware reaches that idle thread authors hooked their external code to check that
they can interact with the firmware. From the emulation ?? we can see firmwre thread switching
and once it reaches idle state as per external code it exits execution.

4.3 Emulation: hci attach.exe

In this emulation author confirmed that the firmware can be executed with the Bluetooth stack of
operating system. They used linux bluetooth stack Bluez to connect the firmware. After successful
connection it will act as a complete virtual Bluetooth device. To check functionality of the virtual
bluetooth device, I tried scanning for bluetooth devices??. Random packets(containing bluetooth
device addresses) are feed to the virtual device via terminal.

5

Figure 4: Emulating execute.exe

4.4 Emulation: lmp fuzz.exe

In this emulation, authors executed link management protocol implementation of the firmware.
Random packets are feed to the firmware by hooking a function of the firmware lm_LmpReceived().
In a real device this function is called when a new link management packet has been received.
Fuzzing this experiment didn’t trigger any bug. Figure ?? shows the relevant function calls while
processing random link management packets. This experiment also emulated the portion when a
lmp packet creates a hci event at host end. Generated hci command is sent to the host by using
lm_sendCmd() function.

4.5 Emulation: acl fuzz.exe

Similar to link management protocol fuzzing, authors fuzzed asynchronous connection-less packet
transfer process. Authors feed the system random payload packet to observe the packet sending and
receiving process. Fuzzing this experiment didn’t trigger any bug neither in authors experiment nor
in my experiment. Goal was to check firmware is executing correctly in the virtual environment.
Figure ?? and ?? shows the relevant function calls while processing random acl packets.

4.6 Reproducing CVE-2019-11516

It is a bug which causes the firmware to crash while searching for other bluetooth devices nearby.
When a bluetooth device is scanning for other devices, it sends a packet. This packet is called
inquiry packet. When nearby bluetooth devices wants to respond to this inquiry they can send
a response packet. In some cases, these nearby bluetooth devices sends an extended inquiry re-
sponse. Problem is a malformed extended inquiry response will crash the inquiring firmware. Here
malformed response means RFU bits of the inquiry response are anything but 0.

In my experiment, I tried to scan for devices with the virtual bluetooth device. While fuzzer
is feeding the virtual bluetooth device with random inquiry responses. After sometimes firmware

6

Figure 5: Emulating hci attach.exe

Figure 6: Emulating lmp fuzz.exe

7

Figure 7: ACL packet sending

Figure 8: ACL packet receiving

of the device which was scanning crashed. Because a inquiry response had the RFU bits set. And
while processing the response in the function inqfilter_registerBdAddr() firmware crashed.
Figure ?? shows the experiment where in the right terminal virtual device is scanning and the left
terminal shows what is happening inside the firmware.

4.7 Emulation: inqfilter.exe

This emulation is created to show the bug mentioned in the previous section. In this emulation
authors simply calls the function inqfilter_registerBdAddr() with a crafted inquiry response.
Results are shown in the figure ??

4.8 Reproducing CVE-2019-11916

When a bluetooth device is trying to connect to a Bluetooth Low Energey(BLE) device or exchang-
ing packets with a BLE device, This bug might trigger. So the problem is when the other BLE
device sends a packet which has a PDU more than 252 bytes. In the receiving firmware side, it
causes a heap corruption error.

In my experiment, I tried to connect to a BLE device with the virtual bluetooth device. While
fuzzer is feeding the virtual bluetooth device with random BLE packets. At a point a packet with
packet length oxff caused the crash. Figure ?? shows the experiemnt. In the right side our virtual
bluetooth device is trying to connect a ble device with the command lecc. Left side shows what
is happening inside it’s firmware.

8

Figure 9: Reproducing CVE-2019-11516

Figure 10: Emulating inqfilter.exe

9

Figure 11: Reproducing CVE-2019-11916

5 Discussion

As per deliverable mentioned above ??, I completed all the experiment I mentioned in the proposal.
I also checked one more emulation hci_oracle.exe which I didn’t mention in the proposal. Due
to time limit and device limitation I couldn’t complete all the experiment mentioned in the article.
But I would say I completed most part (6 emulations out of 8 and reproducing 2 CVEs) from the
article. Focus of this article was about emulating a firmware to complete wireless fuzzing. I would
focus was achieved completely.

10

