Frankenstein: Advanced Wireless Fuzzing to Exploit New Bluetooth
Escalation Targets
Jan Ruge and Jiska Classen, Secure Mobile Networking Lab, TU Darmstadt; Francesco Gringoli,
Dept. of Information Engineering, University of Brescia; Matthias Hollick, Secure Mobile
Networking Lab, TU Darmstadt

Writer: Akib Jawad Nalfis

1 Introduction

Radio frequency protocols or implementations have always been a huge target for attackers. The
reason behind this would be a huge attack surface. An attacker can attack wireless protocols even
before it is connected to the network. Most of the wireless protocol implementation is closed source.
As a result fuzzing became the best way to find bugs in these implementations. Protocol fuzzing
over the air is pretty slow. We have to depend on the wireless transmission time. At the same time
there can be interference while fuzzing over the air. Dependency on physical devices, limitation
while repeating an experiment, complexity in debugging also contributes to the issues of over the
air fuzzing. Making the wireless fuzzing faster at the same time less clunky is a great research
problem.

1.1 Wireless Fuzzing of Bluetooth

One of the most widely used RF protocol implementation would be Bluetooth. Almost all of the
smartphones and portable computers today has a Bluetooth chip in it. At the same time security
of Bluetooth has always been kind of questionable. Bluetooth stack is divided on two parts. Host
(Operating System of the device holding that Bluetooth chip) and Bluetooth Controller chip. These
two in connected with a layer named HCI (Host Controller Interface). Software in the Bluetooth
controller chip is called firmware. Firmware of a Bluetooth chip or any wireless chip is closed source.
Hence it is hard to debug but vulnerabilities residing in the firmware can be catastrophic. At the
same time fixing those vulnerabilities after deployment is another huge problem. Because firmware
resides in ROM chip of the hardware, not easy to update. Fix have to come the chip vendor itself.
Some vulnerability in the firmware can be remain hidden even from the operating system. As some
portion of the Bluetooth hardware doesn’t require any kind of interaction with the host stack. So
fuzzing the Bluetooth firmware to find out bugs before an attacker choose to exploit them is a great
idea. Combining these with the idea to improve over the air fuzzing is our goal in this project. We
choose broadcom Bluetooth firmware to fuzz as it is widely used.

1.2 Prior Work

Fuzzing Bluetooth protocol has been mostly limited to fuzzing the host stack. Bluetooth Firmware
has not been fuzzed public prior to this work. Prior to this Bluetooth Firmware research was mostly
about extending the capability of the chip. There were research about security of the Bluetooth
Firmware but it was manual analysis. btlejack [btlejack] extends capability of the BLE at the
same describing man in the middle attack. InternalBlue [DBLP:journals/corr/abs-1905-00631]
used reverse engineering of Bluetooth Firmware to read/manipulate low layer frames. It also dis-
covers a bug in the Broadcom chip. Over the air fuzzing has been done in deepsec [deepsec]
but it focuses on host part of the Bluetooth stack. Other fuzzing efforts was based on drivers

and operating systems. Syzkaller[syzkaller| supports fuzzing HCI in linux. Apart from broad-
com chip, Marvel Avastar[marvel-avastar] WiFi chip was fuzzed using afl-unicorn[afl-unicorn].
TriforceAFL[Triforce AFL]| uses similar QEMU based fuzzing but it modify the QEMU itself for
other supports. On the other hand Frankenstein here uses QEMU as a userspace program for
support it uses hooking the firmware. LTEFuzz [8835363] fuzzes LTE network over the air and
found vulnerabilities in core network components.

2 Approaches Taken

To solve problems of the over the air fuzzing authors took a new approach. It is emulating the
firmware to create a virtual chip. By emulation authors reduce latency from host to chip commu-
nication. They didn’t have to depend on another chip to send packets over the air. They were able
to cut down the transmission time by generating packets in the device itself. Emulated virtual chip
can be connected to the Bluetooth host side of linux system. Thus creating a full system emulation
environment.

I Linux Host I

Pseudo

SEL Terminal

H.___
i

-
o

e

Snapshot

Maodem Fake 10

Alr —/ Fuzzed Input

-

Figure 1: Emulation Based Fuzzing

2.1 Emulating the firmware

Authors pulled snapshot from the physical device and then used it as a firmware to emulate in
QEMU. But a snapshot can’t be directly emulated. It is just a binary. A elf executable file must be
generated to execute it in the QEMU environment. That elf executable need some more support.

This frankenstein will run as a user-space program it doesn’t support any interrupt or timer
itself. But Bluetooth firmware has it’s own interrupt and timer handlers. These interrupt and timer
handlers need to be implemented manually for the virtual chip. It could have been done in the
QEMU itself, but then that QEMU emulation will not be user-mode emulation. Along with this
support debug symbols and coverage hooks must be included in the firmware for fuzzing. Including
all of those a virtual chip is generated.

2.2 Connecting Virtual Chip to the Host

To connect this virtual chip to the linux host Pseudo Terminal is used. Pseudo terminal is basically
a pipe to connect two programs. Master end of the pipe belongs to the virtual chip and slave end
of the pipe belongs to the host side of Bluetooth stack.

2.3 Random packet generation
To generate inputs packets for the firmware a virtual modem is created. Virtual modem creates
various types of packet to trigger various portion of the firmware codebase.

2.4 Mutating inputs while generating inputs

Frankenstein uses a different type of mutation techniques. Typical fuzzers uses input as a large
binary object and modify it. Frankenstein modified this process slightly. Instead of considering
whole packet as a binary object, it took two parts of the packet (Sequence No and Data) and
modified them separately. This method results in better code coverage[??]. Classic blob (grey line)

4,000 —

- S e T —
— Packel level with Slaed — "
" Packet level _,r-"_ B
] Classc BLOB e
= 3000 — 1
u M
g ,r-"r .-
=
= J
;ﬂf' 2000 T
= _J' Vo
= SR
1 H) |

il 1! Li¥ ik e lid 1

Executed vest cases (log soale)

Figure 5: LMP fuzzing strategy comparison.

Figure 2: Code coverage

represents mutation of the packet as a binary blob. Packet Level (red line) is modification to packet
data only. Packet Level with BlueZ includes mutation of both sequence no and packet data.
2.5 Evaluation based of bugs found

Frankenstein discovered two types of bug in the Bluetooth firmware. One is Remote Code Execution
based and another is heap corruption based. Types of Bugs and their CVEs are included in the
list below.

2.6 Evaluation based on novelty and speed

Since it is the first systemic approach to find bugs in the bluetooth firmware via emulation based
fuzzing, it has novelty in it. Also it increases efficiency than over the air fuzzing.

RCE bugs Heap Corruption Bugs

Link Key Extraction. Device Scanning EIR (CVE-2019-
11516).

Disabling Wifi by writing a specified | Any BLE Packet (CVE-2019-13916).
value while testing in a wifi/bluetooth
combo chip. (CVE-2019-15063).

Any ACL Packet (CVE-2019-18614).
BlueFrag (CVE-2020-0022).

Table 1: Vulnerabilities and CVE’s found by frankenstein

3 Deliverable

Two types deliverable while reproducing this work.
e Reproducing their emulations.

e Reproducing CVE using the emulator.

3.1 Reproducing their emulations

Systemwise build will generate 8 emulations. Emulating all modules will be time consuming. I'll

Figure 3: emulations

try to emulate and report my finding form the execute.exe, heap.exe, hci_attach.exe, indfilter.exe,
lmp_fuzz.exe, acl_fuzz.exe. [It might change since I don’t know which emulation takes how much
time]

3.2 Reproducting CVEs

I will reproduce two CVEs.

e Device Scanning EIR (CVE-2019-11516)

e Any BLE Packet (CVE-2019-13916)
I won’t be able to to reproduce some of the CVE’s due to device constraint.

e Any ACL Packet (CVE-2019-18614) [Reproducing this experiement bricked a module of au-
thors. Also lack of time :(|

e BlucFrag (CVE-2020-0022). [Need an Android 8.0-9.0 device wth this specific bluetooth chip
to follow the steps.]

e Disabling Wifi by writing a specified value while testing in a wifi/bluetooth combo chip.
(CVE-2019-15063) [It’s done on wifi/bluetooth combo chip. I don’t have any neither physical
nor virtual.|

4 Experiments

As per proposal I emulated 5 of the 8 emulations mentioned in the project. Also reproduced
two CVEs from this project. Initially I'll describe experimental setup. Then I'll go through the
emulations. Later I'll describe how CVE’s are reproduced and what triggered those bugs.

4.1 Experimental Setup

Authors goal was to execute Bluetooth firmware in a virtual environment so that they can fuzz
the firmware easily. To do this, authors copied all the memory segments of a running firmware.
Authors copied the memory segment with a script. Authors provided memory segments of the
firmware CYW20735 Bluetooth evaluation board. Patched the firmware to execute it without the
actual hardware. A hooking mechanism which mainly use c-construct is used for patching process.
Then run the virtual firmware to test various portion of the firmware. To check various portion of
the firmware authors created multiple emulations which will execute in the virtual environment.

4.2 Emulation: execute.exe

In this emulation authors simply confirmed they can interact with virtual firmware executing in
QEMU. They also confirmed firmware is executing it’s three threads(bttransport, Im and idle)
correctly. When both bttransport and Im thread is waiting for events firmware will moe to idle
thread. When firmware reaches that idle thread authors hooked their external code to check that
they can interact with the firmware. From the emulation ??7 we can see firmwre thread switching
and once it reaches idle state as per external code it exits execution.

4.3 Emulation: hci_attach.exe

In this emulation author confirmed that the firmware can be executed with the Bluetooth stack of
operating system. They used linux bluetooth stack Bluez to connect the firmware. After successful
connection it will act as a complete virtual Bluetooth device. To check functionality of the virtual
bluetooth device, I tried scanning for bluetooth devices??. Random packets(containing bluetooth
device addresses) are feed to the virtual device via terminal.

$ gemu-arm projects/CY

W20735B1/gen/execute.exe

Figure 4: Emulating execute.exe

4.4 Emulation: Imp_fuzz.exe

In this emulation, authors executed link management protocol implementation of the firmware.
Random packets are feed to the firmware by hooking a function of the firmware 1m_LmpReceived ().
In a real device this function is called when a new link management packet has been received.
Fuzzing this experiment didn’t trigger any bug. Figure 77 shows the relevant function calls while
processing random link management packets. This experiment also emulated the portion when a
Imp packet creates a hci event at host end. Generated hci command is sent to the host by using
1m_sendCmd () function.

4.5 Emulation: acl_fuzz.exe

Similar to link management protocol fuzzing, authors fuzzed asynchronous connection-less packet
transfer process. Authors feed the system random payload packet to observe the packet sending and
receiving process. Fuzzing this experiment didn’t trigger any bug neither in authors experiment nor
in my experiment. Goal was to check firmware is executing correctly in the virtual environment.
Figure 7?7 and ?7 shows the relevant function calls while processing random acl packets.

4.6 Reproducing CVE-2019-11516

It is a bug which causes the firmware to crash while searching for other bluetooth devices nearby.
When a bluetooth device is scanning for other devices, it sends a packet. This packet is called
inquiry packet. When nearby bluetooth devices wants to respond to this inquiry they can send
a response packet. In some cases, these nearby bluetooth devices sends an extended inquiry re-
sponse. Problem is a malformed extended inquiry response will crash the inquiring firmware. Here
malformed response means RFU bits of the inquiry response are anything but 0.

In my experiment, I tried to scan for devices with the virtual bluetooth device. While fuzzer
is feeding the virtual bluetooth device with random inquiry responses. After sometimes firmware

S sudo hcitool -1 hcil lescan

LE Scan ...
38:23:53:DD:1F: (unknown)
CB:4E:25:B7:DF: (unknown)
AB:1F:5A:D5:F5: (unknown)
16:69:5D:7D:30: (unknown)
F2:35:6B:03:6C: (unknown)
06:54:0F :AE:0OF: (unknown)
ED:BF:76:5E:C8: (unknown)
58:CF:D7:40:6F: (unknown)
'BE:2A:07:E0:20: (unknown)
D3:E1:8A:63:48: (unknown)
CO:D2:4B:F6:1A: (unknown)

:29:AF:46:23:6E (unknown)
15:13:AF:EC:93: (unknown)
EE:46:9D:DA:EO: (unknown)
40:86:19:85:42: (unknown)
BA:AG:C2:EO:79: (unknown)
86:D1:28:C1:53: (unknown)
F4:3F:B4:50:5D: (unknown)
DF:53:1E:B2:0D: (unknown)
2C:33:63:1A:CB: (unknown)
IC6:F7:8C:66:16: (unknown)
IE3:B7:EB:05:46: (unknown)
D9:90:A8:A5:BD: (unknown)
C6:6C:1A:8D:56: (unknown)
72:93:31:06:D5:6D (unknown)
52:8E:E2:54:7F: (unknown)
rEH:DHLHHH S (unknown)
F7:4A:73:15:04: (unknown)
EB:A3:B6:88:99: (unknown)
FE:5D:FC:2E:58: (unknown)
76:33:63:3E:32: (unknown)
B3:10:1E:FA:3A: (unknown)
OD:77:97:CE:A0: (unknown)
88:63:07:47:70: (unknown)
96:F1:EA:FO:8A: (unknown)

Figure 5: Emulating hci_attach.exe
TSy
= 0x21fblc;

x@befazenllm LmpReceived (0x280720, 0xz4de38\lr = oxebfea4cl lm LmpReceived(0x280720, 00000000 |
©x9ab9 dynamic_memory ocatePrivate(ox 498, oxo, 0x@) = ex21fblc;
Context swipgh ddle ce ll

lr:OxOZ(Llfllm HaHdlemeRE(Elvedeu(BxZOab74|lV'=0x086‘327 dynamic_memory AllocateOrDie(0x20)1r=6x9a69 dynamic_memory AllocatePrivate(0x200498, 6x8, 0x0) = 0x21fb84;
= 0x21Tb847
1r=0x066310d DHM_LMPTx(0x28026, 0x21fb84)Llr = 6x6bfe4591 DHM_LMPTx(0x286T20, 666600000000000000660000)i

1r=6xBa53bf dynamic_memory Release(6x21fblc) = 6x81;

Context switch lm -> idle

1r=0x6bef9lbc DHM isTxLmpListEmpty|(6x281lec]) = 0x0;
1r=6xebef9184 1m_LmpBBAcked(©x21fb5e, ©x21fb84)Context switch idle -> 1m
1r=6x02cd11 1m_HandleLmpBBAck(8x21fb50, ©x21fb56)1r=6x0a5351 dynamic_memory Release(6x21fb50) = 0x01;

Context switch lm -> idle

1r=exebef9lbc DHM isTxLmpListEmpty(e@x28llec) = 0x0;

acl_conn = ©x280720

injected lmp =0x6bef92ec lm_LmpReceived(0x280T20, 0x24de38)lr = ©xebfe44cl lm LmpReceived(0x280T208, 00000000 |

1r=0x686927 dynamic_memory AllocateOrDie(6x28)1r=0x9a69 dynamic_memory AllocatePrivate(0x2060498, 0x0, 0x0) = 8x21fb50;

= 0x217b50;

Context switch idle -> 1m

1r=exe2cd1lf Im_HandleLmpReceivedPdu(@x20ab74)1r=0x086927 dynamic_memory AllocateOrDie(©x2@)1lr=6x9a69 dynamic_memory AllocatePrivate(©x200498, 0x@, 0x@) = @x21fblc;
= 8x21fblc;

1r=6x086a09 DHM_LMPTx(0x280720, @x21fblc)lr = @xebfe4591 DHM LMPTx(0x280720, 00860000000R00000BEBE0O0)i

1r=0x0a53bf dynamic_memory Release(x21fbse) = ©xe1;

Figure 6: Emulating lmp_fuzz.exe

D _aclTaskFsmSetup(0x281068) Lr=0x@376af bcs_dmaTxEnable(0x2810f8) Lr=0x0bf@39e9 bcs_dmaTxEnable(0x28108)ACL Tx: ->r@ = 0x281018

283310

1r=0x0703db _dmaReqSend(0x2821dc) ;

1r=0x040519 bcs_kernelSlotCbFunctions () lr=0x0bf0339d bcs_SlotCbFunctions();

tb = acl

Tx Done
08331000000000000000000000000000000VVVVVVVVVVVVV0000000000000000000000
(tx_pkt_pyld_hdr >> 2) & Ox3ff = 0x07

Figure 7: ACL packet sending

T: —actlaskFsmSetup(@x281068) 1r=0x83781d bcs_dmaRxEnable(@x@1, ©x@3)1r=0x@bf@39b5 bcs_dmaRxEnable(@x@1, @x@3)1lr=0x870367 _dmaReqSend(0x282200);
= 0x300000;
= 0x300000;

1r=0x04061d bcs_kernelSlotCbFunctions()1r=0x0bf@339d bcs_SlotCbFunctions();

1r=0x040637 bcs_kernelTimerTick();

tb = acl

Rx Hdr Done

pkt_hdr_status = 0x048565

pkt_log = 0x@4aadb

1r=0x040097 bcs_kernelRxHeaderDone () 1r=0x097353 _aclTaskRxHeaderDone(0x281068);

eRxBuffer = 0x221600
DMA

Figure 8: ACL packet receiving

of the device which was scanning crashed. Because a inquiry response had the RFU bits set. And
while processing the response in the function ingfilter_registerBdAddr() firmware crashed.
Figure 7?7 shows the experiment where in the right terminal virtual device is scanning and the left
terminal shows what is happening inside the firmware.

4.7 Emulation: indfilter.exe

This emulation is created to show the bug mentioned in the previous section. In this emulation
authors simply calls the function inqfilter_registerBdAddr () with a crafted inquiry response.
Results are shown in the figure 77

4.8 Reproducing CVE-2019-11916

When a bluetooth device is trying to connect to a Bluetooth Low Energey(BLE) device or exchang-
ing packets with a BLE device, This bug might trigger. So the problem is when the other BLE
device sends a packet which has a PDU more than 252 bytes. In the receiving firmware side, it
causes a heap corruption error.

In my experiment, I tried to connect to a BLE device with the virtual bluetooth device. While
fuzzer is feeding the virtual bluetooth device with random BLE packets. At a point a packet with
packet length oxff caused the crash. Figure 77 shows the experiemnt. In the right side our virtual
bluetooth device is trying to connect a ble device with the command lecc. Left side shows what
is happening inside it’s firmware.

half-blood@halfblood-XPS-13-9350: ~

File Edit View Search Terminal Help File Edit View Search Terminal Help
Class: 0x000000

Service Classes: Unspecified

Device Class: Miscellaneous,

HCI Version: 5.0 (0x9) Revision: 0x0

LMP Version: 5.0 (0x9) Subversion: 0x4208
Manufacturer: Cypress Semiconductor Corporation (305)

Type: Primary Bus: USB
Heap Corruption Detected BD Address: C8:FF:28:77:CF:78 ACL MTU: 1021:8 SCO MTU: 64:1
Posthook UP RUNNING PSCAN ISCAN
pool = 0x20d368 RX bytes:26568 acl:66 sco:0 events:2072 errors:0
TX bytes:2228113 acl:2669 sco:0 commands:256 errors:@
Features: 0Oxbf Oxfe @xcf ©xfe 6xdb Oxff Ox7b ©x87
Packet type: DM1 DM3 DM5 DH1 DH3 DH5 HV1 HV2 HV3
. Link policy: RSWITCH SNIFF
[7f7f1918 | d6abec4f0485847bf2760b01bce381831d0f2108c9d9bc2124e5c4242d6200e5d5952 Link mode: SLAVE ACCEPT
14260308146524168f89ef81169e9c23c8e10fee25d07343e7cc9acdede78ee570e64ad653e8231ea Name: 'halfblood-XPS-13-9350'
24a571839cc94a31eeee714bccfe1f924f33dcOae5e9e2abcd2051674651b12721a352f17623d9d1 Class: 0x1c010c
[d78eb6a94092482359168a3549d1d28d2c44f1ae2c79b1dcf69c2def8255f92ad86caa931431ad30 Service Classes: Rendering, Capturing, Object Transfer
9939246eb4443a50a5bce5f308488dd2c9f80afce781dc6ad4ca3025222c32fa0f@ab77ea52b78f18 Device Class: Computer, Laptop
32c2€23635336cce88083793283811d8bf627f7221461ee29fb6fba235ce6e4d4d3cael565F8d062 HCI Version: 4.1 (0x7) Revision: 0x1000
[725f25f13ba68e8c926b301440d88eb5da30e95749e935f5d3a0f80646d59938a47e77804a05d6ac LMP Version: 4.1 (0x7) Subversion: 0x6607
359654b0042ce8elbea65a8021cc86ec430af18bf0411a9b401e62976a0ffd30b9a30fcIbce3d93c Manufacturer: Broadcom Corporation (15)
3450b41b447d21965e6e2c636ef2beee06b88264b482ad04349c3b02b6dc33bb33edalb4954d7112
e7d0013a9e4373e03201a88f0f9d8a7374c7e674b5c9acbf7c2d20b8130 half-blood@halfblood-XPS-13-9350:~$ hcitool -1 hcil scan
gemu: uncaught target signal 11 (Segmentation fault) - core dumped Scanning ...

Figure 9: Reproducing CVE-2019-11516

Ox2e

Heap Corruption Detected

Posthook

pool = 0x20d368

pool->block start = 0x221a80

pool->capacity = 0x10

pool->size = 0x0180

*free_chunk = Ox412f7f7f

7f7f2f41 | 414141410485847bf2760b01bce381831d0f2108c9d9bc2124e5¢c4242d6200e5d5952
4260308f46524168189ef81169e9c23c8e10fee25d07343e7cc9ac4ede78ee570e64ad653e8231ea
24a571839cc94a31eeee714bccfe1f924f33dcOae5e9e2abcd2051674651b12721a352f17623d9d1
d78eb6a94092482359168a3549d1d28d2c44f1ae2c79b1dcf69c2def8255f92ad86caa931431ad30
99a9246eb4443a50a5bce5f308488dd2c9f80afce781dc6ad4cal3n25222¢c32fa0f0ab77ea52b78f18
32c2e236353a6cce88083793283811d8bf627f7221461ee29fb6fba235ce6e4d4d3cael56518d062
725f25f13ba68e8c926b301440d88eb5da30e95749e935f5d3a0f80646d59938a47e77804a05d6ac
359654b0042ce8elbeat5a8021cc86ec430af18bf0411a9b401e62976a0ffd30b9a30fc9bce3d93c
3450b41b447d21965e6e2c636ef2beecec06b88264b482ad04349¢c3b02b6dc33bb33edal1b4954d7112
e7d0013a9%e4a7ae0a201a88f0f9d8a7374c7e674b5c9acbf7c2d20b8130

iemu: uncaught target signal 11 (Segmentation fault) - core dumped

Figure 10: Emulating inqfilter.exe

wib_rx_status = 0xc046ff0b create connection: Input/output error

wib_pkt_log = 0xb7e93b5e create connection: Input/output error

create connection: Input/output error

create connection: Input/output error

create connection: Input/output error

create connection: Input/output error

create connection: Input/output error

create connection: Input/output error

Heap Corruption Detected create connection: Input/output error

Posthook create connection: Input/output error

pool = 0x20d38c create connection: Input/output error

pool->block_start = 0x2232cO create connection: Input/output error

pool->capacity = 0x0f create connection: Input/output error

pool->size = 0x0108 create connection: Input/output error

*free_chunk = 0x66c8387d create connection: Input/output error

7d38c866 | 21c171b739d93a3fa6166df10037086c588cffba132d83b58f0be24d314d4b701a2fa create connection: Input/output error

68b954d5908975d99e9a64522154c704a242bd8384a9c08fcb8d0f4a641179714b89ac20a4207631 create connection: Input/output error

0d5b24fc2653ad20d06aca28445798a4b66fed5109f5fc6a2f3e6137b192ed43aba9a98167e69c89 create connection: Input/output error

2e4724281eacba2cdba92a08f35c0c93059a75f098ae87da3e11ac0004881d37deb815622c5c6443 create connection: Input/output error

b16bfa49720013c3b2231c2c87790fabacd7623fac6a7c410c6ab5d98e7487b70839cca4a02c4620 create connection: Input/output error

71231d013b67db0135a17bae7a51cc3328193d6fb344b736224372c505a37e77bedae6d80fe5f04 create connection: Input/output error

ccffc78c564€956ff139a7d203d3014083ed7b4c20302909a6383f 4238 create connection: Input/output error

gemu: uncaught target signal 11 (Segmentation fault) - core dumped create connection: Input/output error
[l create connection: Connection timed out

Figure 11: Reproducing CVE-2019-11916

5 Discussion

As per deliverable mentioned above 77, I completed all the experiment I mentioned in the proposal.
I also checked one more emulation hci_oracle.exe which I didn’t mention in the proposal. Due
to time limit and device limitation I couldn’t complete all the experiment mentioned in the article.
But I would say I completed most part (6 emulations out of 8 and reproducing 2 CVEs) from the
article. Focus of this article was about emulating a firmware to complete wireless fuzzing. I would
focus was achieved completely.

10

