

Construction Stormwater General Permit

Stormwater Pollution Prevention Plan

(SWPPP)

for

Port of Tacoma Replacement of Railway and Special Trackwork
at Various Locations

Prepared for:
The Washington State Department of Ecology
Northwest Regional Office

Permittee / Owner	Developer	Operator
Port of Tacoma	TBD	Port of Tacoma

Project Site Location
Tacoma, Washington

Certified Erosion and Sediment Control Lead (CESCL)

Name	Organization	Contact Phone Number
TBD	TBD	TBD

SWPPP Prepared By

Name	Organization	Contact Phone Number
Steve Kingsley	KPFF Consulting Engineers	253-396-0150

SWPPP Preparation Date

March 1, 2017

Project Construction Dates

Activity / Phase	Start Date	End Date
Construction	April 2017	December 2017

Table of Contents

1	Project Information	4
1.1	Existing Conditions	4
1.2	Proposed Construction Activities.....	4
2	Construction Stormwater Best Management Practices (BMPs).....	6
2.1	The 13 Elements.....	6
2.1.1	Element 1: Preserve Vegetation / Mark Clearing Limits	6
2.1.2	Element 2: Establish Construction Access	7
2.1.3	Element 3: Control Flow Rates	8
2.1.4	Element 4: Install Sediment Controls	9
2.1.5	Element 5: Stabilize Soils	10
2.1.6	Element 6: Protect Slopes.....	11
2.1.7	Element 7: Protect Drain Inlets	12
2.1.8	Element 8: Stabilize Channels and Outlets	13
2.1.9	Element 9: Control Pollutants.....	14
2.1.10	Element 10: Control Dewatering	17
2.1.11	Element 11: Maintain BMPs.....	18
2.1.12	Element 12: Manage the Project.....	19
2.1.13	Element 13: Protect Low Impact Development (LID) BMPs	21
3	Pollution Prevention Team	22
4	Monitoring and Sampling Requirements	23
4.1	Site Inspection	23
4.2	Stormwater Quality Sampling.....	23
4.2.1	Turbidity Sampling	23
4.2.2	pH Sampling	25
5	Discharges to 303(d) or Total Maximum Daily Load (TMDL) Waterbodies	26
5.1	303(d) Listed Waterbodies	26
5.2	TMDL Waterbodies	26
6	Reporting and Record Keeping	27
6.1	Record Keeping	27
6.1.1	Site Log Book	27
6.1.2	Records Retention	27
6.1.3	Updating the SWPPP.....	27
6.2	Reporting	27
6.2.1	Discharge Monitoring Reports.....	27

6.2.2	Notification of Noncompliance.....	28
-------	------------------------------------	----

List of Tables

Table 2 – Pollutants	14
Table 3 – pH-Modifying Sources	15
Table 5 – Management	19
Table 6 – BMP Implementation Schedule	20
Table 7 – Team Information	22
Table 8 – Turbidity Sampling Method.....	23
Table 9 – pH Sampling Method.....	25

List of Appendices

Appendix/Glossary

- A. Site Map**
- B. BMP**
- C. Site Inspection Form**
- D. Construction Stormwater General Permit (CSWGP)**
- E. 303(d) List Waterbodies / TMDL Waterbodies Information**
- F. Engineering Calculations**

List of Acronyms and Abbreviations

Acronym / Abbreviation	Explanation
303(d)	Section of the Clean Water Act pertaining to Impaired Waterbodies
BFO	Bellingham Field Office of the Department of Ecology
BMP(s)	Best Management Practice(s)
CESCL	Certified Erosion and Sediment Control Lead
CO₂	Carbon Dioxide
CRO	Central Regional Office of the Department of Ecology
CSWGP	Construction Stormwater General Permit
CWA	Clean Water Act
DMR	Discharge Monitoring Report
DO	Dissolved Oxygen
Ecology	Washington State Department of Ecology
EPA	United States Environmental Protection Agency
ERO	Eastern Regional Office of the Department of Ecology
ERTS	Environmental Report Tracking System
ESC	Erosion and Sediment Control
GULD	General Use Level Designation
NPDES	National Pollutant Discharge Elimination System
NTU	Nephelometric Turbidity Units
NWRO	Northwest Regional Office of the Department of Ecology
pH	Power of Hydrogen
RCW	Revised Code of Washington
SPCC	Spill Prevention, Control, and Countermeasure
su	Standard Units
SWMMEW	Stormwater Management Manual for Eastern Washington
SWMMWW	Stormwater Management Manual for Western Washington
SWPPP	Stormwater Pollution Prevention Plan
TESC	Temporary Erosion and Sediment Control
SWRO	Southwest Regional Office of the Department of Ecology
TMDL	Total Maximum Daily Load
VFO	Vancouver Field Office of the Department of Ecology
WAC	Washington Administrative Code
WSDOT	Washington Department of Transportation
WWHM	Western Washington Hydrology Model

1 Project Information

Project/Site Name: Port of Tacoma Replacement of Railway and Special Trackwork at Various Locations

Street/Location: 1 Sicum Plaza

City: Tacoma State: WA Zip code: 98401

Subdivision: N/A

Receiving waterbody: Blair Waterway (Puget Sound)

1.1 Existing Conditions

Total acreage (including support activities such as off-site equipment staging yards, material storage areas, borrow areas).

Total acreage: 1.33

Disturbed acreage: 1.33

Existing structures: N/A

Landscape N/A

Topography:

Drainage patterns: Project site slopes range from 0%-2%

Existing Vegetation: There is no existing vegetation.

Critical Areas (wetlands, streams, high erosion risk, steep or difficult to stabilize slopes): Project is mapped Zone C on the Flood Insurance Rate Map (minimal flooding)

List of known impairments for 303(d) listed or Total Maximum Daily Load (TMDL) for the receiving waterbody: The project sites eventually discharge to the Blair Waterway, which has the following impairments: Benzene and sediment bioassay. See Appendix E.

All removed soil and ballast material shall be stockpiled within contractor laydown area for testing prior to removal per the specifications. No soils are to be resused onsite, but are anticipated to be exported to appropriate off-site facilities after a completed soil profile has been performed by Port resources.

Proposed Construction Activities

Description of Site Development

The Project is intended to perform railway track and special trackwork replacements required to maintain capacity and longevity of the Port of Tacoma's (The Port's) rail system operated by the Port and Tacoma Rail (TR). The project site is comprised of 5 existing rail yard locations supporting both the Port and TR operations. At each of the 5 areas, various railway and special trackwork components will be replaced as part of ongoing maintenance within the Port, for a total of 1.33 acres of disturbed area. Within these areas, asphalt grade crossings will be replaced as necessary for installation of replaced track and special trackwork. Upon completion of the proposed project, site conditions and land use will be returned to the state they are today.

Description of construction activities:

Construction activities will include site preparation, TESC installation, and the following specific construction activities:

- Selective site demolition and erosion control

- Site excavation and backfill
- Railway track work and special track work replacement
- Access grade crossing demolition and replacement

Description of site drainage including flow from and onto adjacent properties. Must be consistent with Site Map in Appendix A:

Surface water in all areas is collected in stormwater catch basins, manholes and drainage ditches (swales) which are conveyed to either the Erdahl Ditch or Lincoln Ditch. Stormwater is also collected via track subdrains (perforated pipe) typically running parallel to the railroad track and conveyed to either the Erdahl ditch or Lincoln Avenue ditch. All of the conveyance systems ultimately drain to the Blair Waterway to the northeast of the site. No new storm drain structures or conveyance piping will be implemented and the existing stormwater network will not be altered, therefore the existing drainage paths will not be altered throughout the course of this project.

Description of final stabilization:

The final steps to stabilizing the site will be asphalt paving for replacement of existing grade crossings, and gravel surfacing around replaced railway track. Upon project completion, the site features and surfacing will match existing conditions.

Contaminated Site Information:

Proposed activities regarding contaminated soils or groundwater:

No soils are to be reused onsite but are anticipated to be exported to appropriate off-site facilities after a completed soil profile has been performed by Port resources. Some of the soils excavated on site are anticipated to contain regulated material. Soils identified with anticipated regulated material shall be segregated from other excavated material until testing and analysis can be completed by the Port. Upon completion of the soil profile, the Engineer will inform the Contractor if any special handling requirements are needed. Soils requiring special handling will be hauled and disposed of at an approved disposal facility.

2 Construction Stormwater Best Management Practices (BMPs)

The SWPPP is a living document reflecting current conditions and changes throughout the life of the project. These changes may be informal (i.e., hand-written notes and deletions). Update the SWPPP when the CESCL has noted a deficiency in BMPs or deviation from original design.

2.1 The 13 Elements

2.1.1 Element 1: Preserve Vegetation / Mark Clearing Limits

The existing site does not contain any natural vegetation. Therefore, no BMP methods will need to be implemented for vegetation preservation.

List and describe BMPs: N/A

Installation Schedules: N/A

Inspection and Maintenance plan: N/A

Responsible Staff: N/A

2.1.2 Element 2: Establish Construction Access

It is assumed that the existing site conditions are capable of supporting the intent of a stabilized construction entrance. If dust and sediment track out is detected, the contractor shall implement a stabilized construction entrance where trucks are entering and exiting the construction site via the adjacent right of way. During construction, if the stabilized construction entrance proves not to provide enough dust and sediment track out elimination, a wheel wash shall be implemented. Roadways shall be cleaned regularly if sediment is tracked out via street sweeping or street cleaning activities.

List and describe BMPs: BMP C 105: Stabilized Construction Entrance/Exit, BMP C 106: Wheel Wash

Installation Schedules: TBD

Inspection and Maintenance plan: See Appendix B

Responsible Staff: TBD

2.1.3 Element 3: Control Flow Rates

Will you construct stormwater retention and/or detention facilities?

Yes No

Will you use permanent infiltration ponds or other low impact development (example: rain gardens, bio-retention, porous pavement) to control flow during construction?

Yes No

List and describe BMPs: N/A

Installation Schedules: N/A

Inspection and Maintenance plan: N/A

Responsible Staff: N/A

2.1.4 Element 4: Install Sediment Controls

All stormwater runoff will pass through an appropriate sediment control BMP prior to leaving the site. Wattles (BMP 235) will be used to prevent surface water sediments from exiting the site by providing a physical barrier. Storm Drain Inlet Protection (BMP 220) will be implemented in order to minimize the amount of sediment leaving the site through the existing storm water collection and conveyance systems.

List and describe BMPs: C220:Storm Drain Inlet Protection, C235: Wattles

Installation Schedules: TBD

Inspection and Maintenance plan: See Appendix B

Responsible Staff: TBD

2.1.5 Element 5: Stabilize Soils

West of the Cascade Mountains Crest

Season	Dates	Number of Days Soils Can be Left Exposed
During the Dry Season	May 1 – September 30	7 days
During the Wet Season	October 1 – April 30	2 days

Soils must be stabilized at the end of the shift before a holiday or weekend if needed based on the weather forecast.

Anticipated project dates: Start date: April 2017 End date: December 2017

Will you construct during the wet season?

Yes No

List and describe BMPs: C123: Plastic Covering, C130: Surface Roughening, C140: Dust Control

Installation Schedules: N/A

Inspection and Maintenance plan: N/A

Responsible Staff: N/A

2.1.6 Element 6: Protect Slopes

West of the Cascade Mountains Crest

Will steep slopes be present at the site during construction?

Yes No

List and describe BMPs: N/A

Installation Schedules: N/A

Inspection and Maintenance plan: N/A

Responsible Staff: N/A

2.1.7 Element 7: Protect Drain Inlets

All storm drain inlets shall be protected to prevent unfiltered or untreated water from entering the drainage conveyance system. However, the first priority is to keep all access roads clean of sediment and keep street wash water separate from entering storm drains until treatment can be provided. Storm Drain Inlet Protection (BMP C220) will be implemented for all drainage inlets that could potentially be impacted by sediment-laden runoff on and near the project site.

List and describe BMPs: C 220 Storm Drain Inlet Protection

Installation Schedules: TBD

Inspection and Maintenance plan: See Appendix B

Responsible Staff: TBD

2.1.8 Element 8: Stabilize Channels and Outlets

Provide stabilization, including armoring material, adequate to prevent erosion of outlets, adjacent stream banks, slopes, and downstream reaches, will be installed at the outlets of all conveyance systems.

There are no channels and outlets in this project. No existing drainage systems will be altered.

List and describe BMPs: N/A

Installation Schedules: N/A

Inspection and Maintenance plan: N/A

Responsible Staff: N/A

2.1.9 Element 9: Control Pollutants

The following pollutants are anticipated to be present on-site:

Table 2 – Pollutants

Pollutant (List pollutants and source, if applicable)
Dust from excavation and grading activities
Petroleum and equipment oil/fluids

Demolition:

- Dust released from demolished asphalt and concrete paving will be controlled using Dust Control Measures (BMP C140).
- Storm Drain inlets vulnerable to stormwater discharge carrying dust, soil, or debris will be protected using Storm Drain Inlet Protection (BMP C220 as described in Element 7)
- Process water and slurry resulting from sawcutting and surfacing operations will be prevented from entering the waters of the State by implementing Sawcutting and Surfacing Pollution Prevention measures (BMP C152).

List and describe BMPs: C140: Dust Control Measures, C220 Storm Drain Inlet Protection, C152: Surfacing Pollution Prevention

Installation Schedules: TBD

Inspection and Maintenance plan: See Appendix B

Responsible Staff: TBD

Will maintenance, fueling, and/or repair of heavy equipment and vehicles occur on-site?

Yes No

Vehicles, construction equipment, and/or petroleum storage/dispensing:

- Vehicles, construction equipment, and/or petroleum product storage/dispensing:
 - All vehicles, equipment, and petroleum product storage/dispensing areas will be inspected regularly to detect any leaks or spills, and to identify maintenance needs to prevent leaks or spills.
 - On-site fueling tanks and petroleum product storage containers shall include secondary containment.
 - Spill prevention measures, such as drip pans, will be used when conducting maintenance and repair of vehicles or equipment.
 - In order to perform emergency repairs on site, temporary plastic will be placed beneath and, if raining, over the vehicle.
 - Contaminated surfaces shall be cleaned immediately following any discharge or spill incident.

List and describe BMPs: C150: Materials on Hand, C 153: Material Delivery, Storage, and Containment

Installation Schedules: TBD

Inspection and Maintenance plan: See Appendix B

Responsible Staff: TBD

Will wheel wash or tire bath system BMPs be used during construction?

Yes No

Wheel wash or tire bath wastewater shall be discharged to a separate on-site treatment system or to the sanitary sewer as part of Wheel Wash implementation (BMP C106)

List and describe BMPs: C106: Wheel Wash

Installation Schedules: TBD

Inspection and Maintenance plan: See Appendix B

Responsible Staff: TBD

Will pH-modifying sources be present on-site?

Yes No

Table 3 – pH-Modifying Sources

<input type="checkbox"/>	None
<input type="checkbox"/>	Bulk cement
<input type="checkbox"/>	Cement kiln dust
<input type="checkbox"/>	Fly ash
<input type="checkbox"/>	Other cementitious materials
<input type="checkbox"/>	New concrete washing or curing waters
<input checked="" type="checkbox"/>	Waste streams generated from concrete grinding and sawing
<input type="checkbox"/>	Exposed aggregate processes
<input type="checkbox"/>	Dewatering concrete vaults
<input type="checkbox"/>	Concrete pumping and mixer washout waters
<input type="checkbox"/>	Recycled concrete
<input type="checkbox"/>	Recycled concrete stockpiles
<input type="checkbox"/>	Other (i.e., calcium lignosulfate) [please describe:]

List and describe BMPs: C152: Surfacing Pollution Prevention

Installation Schedules: TBD

Inspection and Maintenance plan: See Appendix 3

Responsible Staff: TBD

Concrete trucks must not be washed out onto the ground, or into storm drains, open ditches, streets, or streams. Excess concrete must not be dumped on-site, except in designated concrete washout areas with appropriate BMPs installed.

Will uncontaminated water from water-only based shaft drilling for construction of building, road, and bridge foundations be infiltrated provided the wastewater is managed in a way that prohibits discharge to surface waters?

Yes No

List and describe BMPs: N/A

Installation Schedules: N/A

Inspection and Maintenance plan: N/A

Responsible Staff: N/A

2.1.10 Element 10: Control Dewatering

There will be no dewatering in this project.

List and describe BMPs: N/A

Installation Schedules: N/A

Inspection and Maintenance plan: N/A

Responsible Staff: N/A

2.1.11 Element 11: Maintain BMPs

All temporary and permanent Erosion and Sediment Control (ESC) BMPs shall be maintained and repaired as needed to ensure continued performance of their intended function.

Maintenance and repair shall be conducted in accordance with each particular BMP specification (see *Volume II of the SWMMWW* or *Chapter 7 of the SWMMEW*).

Visual monitoring of all BMPs installed at the site will be conducted at least once every calendar week and within 24 hours of any stormwater or non-stormwater discharge from the site. If the site becomes inactive and is temporarily stabilized, the inspection frequency may be reduced to once every calendar month.

All temporary ESC BMPs shall be removed within 30 days after final site stabilization is achieved or after the temporary BMPs are no longer needed.

Trapped sediment shall be stabilized on-site or removed. Disturbed soil resulting from removal of either BMPs or vegetation shall be permanently stabilized.

Additionally, protection must be provided for all BMPs installed for the permanent control of stormwater from sediment and compaction. BMPs that are to remain in place following completion of construction shall be examined and restored to full operating condition. If sediment enters these BMPs during construction, the sediment shall be removed and the facility shall be returned to conditions specified in the construction documents.

2.1.12 Element 12: Manage the Project

The Project will be managed based on the following principles:

- Projects will be phased to the maximum extent practicable and seasonal work limitations will be taken into account.
- Inspection and monitoring:
 - Inspection, maintenance and repair of all BMPs will occur as needed to ensure performance of their intended function.
 - Site inspections and monitoring will be conducted in accordance with Special Condition S4 of the CSWGP. Sampling locations are indicated on the Site Map. Sampling station(s) are located in accordance with applicable requirements of the CSWGP.
- Maintain an updated SWPPP.
 - The SWPPP will be updated, maintained, and implemented in accordance with Special Conditions S3, S4, and S9 of the CSWGP.

As site work progresses the SWPPP will be modified routinely to reflect changing site conditions. The SWPPP will be reviewed monthly to ensure the content is current.

Table 5 – Management

<input checked="" type="checkbox"/>	Design the project to fit the existing topography, soils, and drainage patterns
<input type="checkbox"/>	Emphasize erosion control rather than sediment control
<input checked="" type="checkbox"/>	Minimize the extent and duration of the area exposed
<input type="checkbox"/>	Keep runoff velocities low
<input checked="" type="checkbox"/>	Retain sediment on-site
<input checked="" type="checkbox"/>	Thoroughly monitor site and maintain all ESC measures
<input type="checkbox"/>	Schedule major earthwork during the dry season
<input type="checkbox"/>	Other (please describe)

Table 6 – BMP Implementation Schedule

2.1.13 Element 13: Protect Low Impact Development (LID) BMPs

No LID BMPs are present onsite, therefore no protection measures are required.

3 Pollution Prevention Team

Table 7 – Team Information

Title	Name(s)	Phone Number
Certified Erosion and Sediment Control Lead (CESCL)	TBD	TBD
Resident Engineer	TBD	TBD
Emergency Ecology Contact	TBD	TBD
Emergency Permittee/ Owner Contact	TBD	TBD
Non-Emergency Owner Contact	TBD	TBD
Monitoring Personnel	TBD	TBD
Ecology Regional Office	Northwest Regional Office	425-649-7098

4 Monitoring and Sampling Requirements

Monitoring includes visual inspection, sampling for water quality parameters of concern, and documentation of the inspection and sampling findings in a site log book. A site log book will be maintained for all on-site construction activities and will include:

- A record of the implementation of the SWPPP and other permit requirements
- Site inspections
- Stormwater sampling data

File a blank form under Appendix D.

The site log book must be maintained on-site within reasonable access to the site and be made available upon request to Ecology or the local jurisdiction.

Numeric effluent limits may be required for certain discharges to 303(d) listed waterbodies. See CSWGP Special Condition S8 and Section 5 of this template.

4.1 Site Inspection

Site inspections will be conducted at least once every calendar week and within 24 hours following any discharge from the site. For sites that are temporarily stabilized and inactive, the required frequency is reduced to once per calendar month.

The discharge point(s) are indicated on the Site Map (see Appendix A) and in accordance with the applicable requirements of the CSWGP.

4.2 Stormwater Quality Sampling

4.2.1 Turbidity Sampling

Requirements include calibrated turbidity meter or transparency tube to sample site discharges for compliance with the CSWGP. Sampling will be conducted at all discharge points at least once per calendar week.

Method for sampling turbidity:

Table 8 – Turbidity Sampling Method

<input type="checkbox"/>	Turbidity Meter/Turbidimeter (required for disturbances 5 acres or greater in size)
<input checked="" type="checkbox"/>	Transparency Tube (option for disturbances less than 1 acre and up to 5 acres in size)

The benchmark for turbidity value is 25 nephelometric turbidity units (NTU) and a transparency less than 33 centimeters.

If the discharge's turbidity is 26 to 249 NTU or the transparency is less than 33 cm but equal to or greater than 6 cm, the following steps will be conducted:

1. Review the SWPPP for compliance with Special Condition S9. Make appropriate revisions within 7 days of the date the discharge exceeded the benchmark.
2. Immediately begin the process to fully implement and maintain appropriate source control and/or treatment BMPs as soon as possible. Address the problems within 10

days of the date the discharge exceeded the benchmark. If installation of necessary treatment BMPs is not feasible within 10 days, Ecology may approve additional time when the Permittee requests an extension within the initial 10-day response period.

3. Document BMP implementation and maintenance in the site log book.

If the turbidity exceeds 250 NTU or the transparency is 6 cm or less at any time, the following steps will be conducted:

1. Telephone or submit an electronic report to the applicable Ecology Region's Environmental Report Tracking System (ERTS) within 24 hours.

- **Central Region** (Benton, Chelan, Douglas, Kittitas, Klickitat, Okanogan, Yakima): (509) 575-2490 or http://www.ecy.wa.gov/programs/spills/forms/nerts_online/CRO_nerts_online.html
- **Eastern Region** (Adams, Asotin, Columbia, Ferry, Franklin, Garfield, Grant, Lincoln, Pend Oreille, Spokane, Stevens, Walla Walla, Whitman): (509) 329-3400 or http://www.ecy.wa.gov/programs/spills/forms/nerts_online/ERO_nerts_online.html
- **Northwest Region** (King, Kitsap, Island, San Juan, Skagit, Snohomish, Whatcom): (425) 649-7000 or http://www.ecy.wa.gov/programs/spills/forms/nerts_online/NWRO_nerts_online.html
- **Southwest Region** (Clallam, Clark, Cowlitz, Grays Harbor, Jefferson, Lewis, Mason, Pacific, Pierce, Skamania, Thurston, Wahkiakum,): (360) 407-6300 or http://www.ecy.wa.gov/programs/spills/forms/nerts_online/SWRO_nerts_online.html

2. Immediately begin the process to fully implement and maintain appropriate source control and/or treatment BMPs as soon as possible. Address the problems within 10 days of the date the discharge exceeded the benchmark. If installation of necessary treatment BMPs is not feasible within 10 days, Ecology may approve additional time when the Permittee requests an extension within the initial 10-day response period

3. Document BMP implementation and maintenance in the site log book.

4. Continue to sample discharges daily until one of the following is true:

- Turbidity is 25 NTU (or lower).
- Transparency is 33 cm (or greater).
- Compliance with the water quality limit for turbidity is achieved.
 - 1 - 5 NTU over background turbidity, if background is less than 50 NTU
 - 1% - 10% over background turbidity, if background is 50 NTU or greater
- The discharge stops or is eliminated.

4.2.2 pH Sampling

pH monitoring is required for “Significant concrete work” (i.e., greater than 1000 cubic yards poured concrete over the life of the project). The use of recycled concrete or engineered soils (soil amendments including but not limited to Portland cement-treated base [CTB], cement kiln dust [CKD] or fly ash) also requires pH monitoring.

For significant concrete work, pH sampling will start the first day concrete is poured and continue until it is cured, typically three (3) weeks after the last pour.

For engineered soils and recycled concrete, pH sampling begins when engineered soils or recycled concrete are first exposed to precipitation and continues until the area is fully stabilized.

If the measured pH is 8.5 or greater, the following measures will be taken:

1. Prevent high pH water from entering storm sewer systems or surface water.
2. Adjust or neutralize the high pH water to the range of 6.5 to 8.5 su using appropriate technology such as carbon dioxide (CO₂) sparging (liquid or dry ice).
3. Written approval will be obtained from Ecology prior to the use of chemical treatment other than CO₂ sparging or dry ice.

Method for sampling pH:

Table 9 – pH Sampling Method

<input type="checkbox"/>	pH meter
<input type="checkbox"/>	pH test kit
<input type="checkbox"/>	Wide range pH indicator paper

There will be no significant concrete work as a part of this project, therefore no pH sampling is needed.

5 Discharges to 303(d) or Total Maximum Daily Load (TMDL) Waterbodies

5.1 303(d) Listed Waterbodies

Is the receiving water 303(d) (Category 5) listed for turbidity, fine sediment, phosphorus, or pH?

Yes No

List the impairment(s):

Benzene, Sediment Bioassay

5.2 TMDL Waterbodies

Waste Load Allocation for CWSGP discharges: N/A

List and describe BMPs: N/A

Discharges to TMDL receiving waterbodies will meet in-stream water quality criteria at the point of discharge.

The Construction Stormwater General Permit is included in Appendix D.

6 Reporting and Record Keeping

6.1 Record Keeping

6.1.1 Site Log Book

A site log book will be maintained for all on-site construction activities and will include:

- A record of the implementation of the SWPPP and other permit requirements
- Site inspections
- Sample logs

6.1.2 Records Retention

Records will be retained during the life of the project and for a minimum of three (3) years following the termination of permit coverage in accordance with Special Condition S5.C of the CSWGP.

Permit documentation to be retained on-site:

- CSWGP
- Permit Coverage Letter
- SWPPP
- Site Log Book

Permit documentation will be provided within 14 days of receipt of a written request from Ecology. A copy of the SWPPP or access to the SWPPP will be provided to the public when requested in writing in accordance with Special Condition S5.G.2.b of the CSWGP.

6.1.3 Updating the SWPPP

The SWPPP will be modified if:

- Found ineffective in eliminating or significantly minimizing pollutants in stormwater discharges from the site.
- There is a change in design, construction, operation, or maintenance at the construction site that has, or could have, a significant effect on the discharge of pollutants to waters of the State.

The SWPPP will be modified within seven (7) days if inspection(s) or investigation(s) determine additional or modified BMPs are necessary for compliance. An updated timeline for BMP implementation will be prepared.

6.2 Reporting

6.2.1 Discharge Monitoring Reports

Cumulative soil disturbance is one (1) acre or larger; therefore, Discharge Monitoring Reports (DMRs) will be submitted to Ecology monthly. If there was no discharge during a given

monitoring period the DMR will be submitted as required, reporting "No Discharge". The DMR due date is fifteen (15) days following the end of each calendar month. DMRs will be reported online through Ecology's WQWebDMR System.

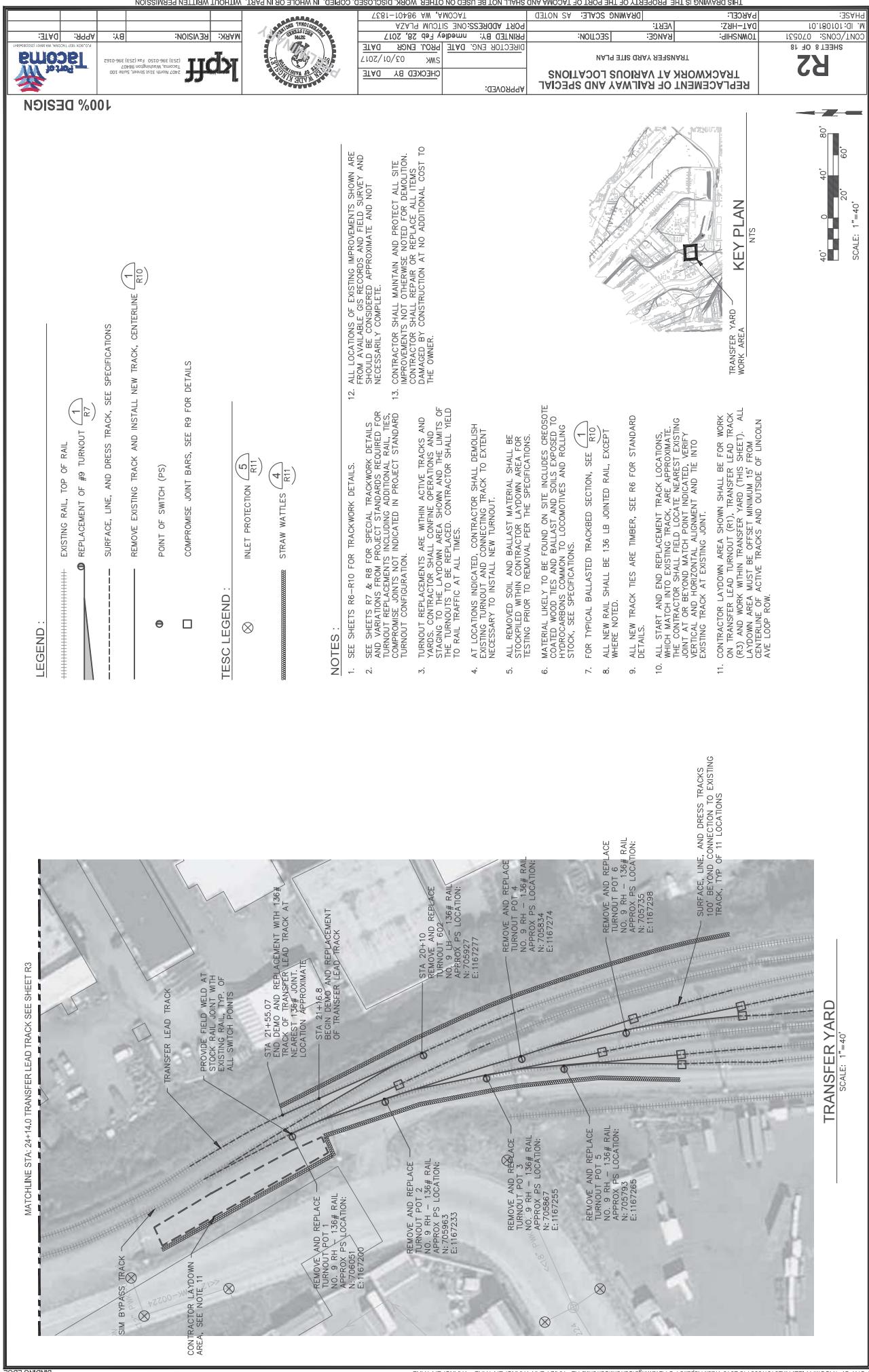
6.2.2 Notification of Noncompliance

If any of the terms and conditions of the permit is not met, and the resulting noncompliance may cause a threat to human health or the environment, the following actions will be taken:

1. Ecology will be notified within 24-hours of the failure to comply by calling the applicable Regional office ERTS phone number (Regional office numbers listed below).
2. Immediate action will be taken to prevent the discharge/pollution or otherwise stop or correct the noncompliance. If applicable, sampling and analysis of any noncompliance will be repeated immediately and the results submitted to Ecology within five (5) days of becoming aware of the violation.
3. A detailed written report describing the noncompliance will be submitted to Ecology within five (5) days, unless requested earlier by Ecology.

Anytime turbidity sampling indicates turbidity is 250 NTUs or greater, or water transparency is 6 cm or less, the Ecology Regional office will be notified by phone within 24 hours of analysis as required by Special Condition S5.A of the CSWGP.

- **Central Region** at (509) 575-2490 for Benton, Chelan, Douglas, Kittitas, Klickitat, Okanogan, or Yakima County
- **Eastern Region** at (509) 329-3400 for Adams, Asotin, Columbia, Ferry, Franklin, Garfield, Grant, Lincoln, Pend Oreille, Spokane, Stevens, Walla Walla, or Whitman County
- **Northwest Region** at (425) 649-7000 for Island, King, Kitsap, San Juan, Skagit, Snohomish, or Whatcom County
- **Southwest Region** at (360) 407-6300 for Clallam, Clark, Cowlitz, Grays Harbor, Jefferson, Lewis, Mason, Pacific, Pierce, Skamania, Thurston, or Wahkiakum

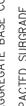

Include the following information:

1. Your name and / Phone number
2. Permit number
3. City / County of project
4. Sample results
5. Date / Time of call
6. Date / Time of sample
7. Project name

In accordance with Special Condition S4.D.5.b of the CSWGP, the Ecology Regional office will be notified if chemical treatment other than CO₂ sparging is planned for adjustment of high pH water.

A. Site Map

ORT OF TACOMA FILE-N:2016-0600143-0216 Track Repairs Pot Drawings (Current) RAIL PLAN TRANSFER LEAD - TRANSFER LEAD TURNOUT BINDING EDGE



100% DESIGN

MATCH EXISTING GRADE
AT EXTENTS OF SECTION
5" HMA FG 64 22 CL 1/2"
6" AGGREGATE BASE COURSE
COMPACTED SUBGRADE
OR TILL AS REQUIRED

MATCH EXISTING GRADE
AT EXTENTS OF SECTION
5" HMA FG 64 22 CL 1/2"
6" AGGREGATE BASE COURSE
COMPACTED SUBGRADE
OR TILL AS REQUIRED

HMA PAVEMENT SECTION

HMA PAVEMENT SECTION

**MATCH EXISTING
PAVEMENT DETAIL**

2
R3-R4

**MATCH EXISTING
PAVEMENT DETAIL**

2
R3-R4

The diagram illustrates a cross-section of a HMA (Hot Mix Asphalt) pavement. It shows a thick, grey, textured layer representing the asphalt concrete, which is supported by a layer of gravel or aggregate. A dimension line with arrows at the top indicates a minimum thickness of 1'-0" (1 foot and 0 inches). The text '1'-0" MIN' is written vertically next to the dimension line. A vertical line on the left is labeled '1 HMA PAVEMENT SECTION' with a minus sign, indicating the total thickness of the paved area.

The diagram illustrates a cross-section of a HMA (Hot Mix Asphalt) pavement. It shows a thick, grey, textured layer representing the asphalt concrete, which is supported by a layer of gravel or aggregate. A dimension line with arrows at the top indicates a minimum thickness of 1'-0" (1 foot and 0 inches). The text '1'-0" MIN' is written vertically next to the dimension line. A vertical line on the left is labeled '1 HMA PAVEMENT SECTION' with a minus sign, indicating the total thickness of the paved area.

**HMA CROSSING PAVEMENT
AND ASPHALT FLANGEWAY**

**HMA CROSSING PAVEMENT
AND ASPHALT FLANGEWAY**

HMA CROSSING PAVEMENT AND ASPHALT FLANGEWAY

HMA CROSSING PAVEMENT AND ASPHALT FLANGEWAY

STRAW WATTLE DETAIL

STRAW WATTLE DETAIL

ASPHALT GRADE CROSSING
SECTION

ASPHALT GRADE CROSSING
SECTION

The diagram illustrates a stormwater management system, likely a storm drain or infiltration structure. It features a central vertical pipe with a flared base. A horizontal adapter skirt trim is shown at the base, angled to within 5° of grade. A retrieval strap is attached to the side of the structure. The surrounding area is shaded with diagonal lines. An overflow bypass for peak storm volumes is indicated by an arrow pointing away from the main structure. A circular area is labeled 'CATCH 'C'', and another is labeled 'MIN'. The text 'EVENT' is located at the bottom right.

The diagram illustrates a stormwater management system, likely a storm drain or infiltration structure. It features a central vertical pipe with a flared base. A horizontal adapter skirt trim is shown at the bottom, angled to within 5° of grade. A retrieval strap is attached to the side of the structure. The top section is labeled 'OVERFLOW BYPASS FOR PEAK STORM VOLUMES'. A circular area at the bottom is labeled 'CATCH 'C'', and a smaller circular area within it is labeled 'MIN'. The entire structure is surrounded by a hatched area representing soil or a base layer.

INLET PROTECTION DETAIL

INLET PROTECTION DETAIL

OTES

NOTES:

1. ACCESS ROAD SURFACE SHALL NOT BE MORE THAN 3/4" HIGHER OR LOWER THAN TOP OF THE NEAR RAIL 8'-6" FROM TRACK CENTERLINE.
2. ALL GRADE CROSSINGS ARE TO BE 10' TIMBER TIES.
3. AT THE TRANSFER LEAD TRACK NEW ASPHALT PAVING SHALL EXTEND APPROXIMATELY 8.5' EAST OF Q, TO THE MIDPOINT BETWEEN SM BYPASS TRACK C, AND TRANSFER LEAD TRACK C, AND 15' WEST OF TRANSFER LEAD TRACK C.
4. AT THE BUBBLE TRACK CROSSING NEW ASPHALT PAVING SHALL EXTEND APPROXIMATELY 8.5' EAST OF BUBBLE TRACK C, TO THE MIDPOINT BETWEEN BUBBLE TRACK C, UP TO BUBBLE TRACK C, AND APPROXIMATELY 10' WEST OF BUBBLE TRACK C, UP TO BUBBLE TRACK C.

B. BMP Fact Sheets

3.1.4 BMP C105: Stabilized Construction Entrance/Exit

3.1.4.1 Purpose

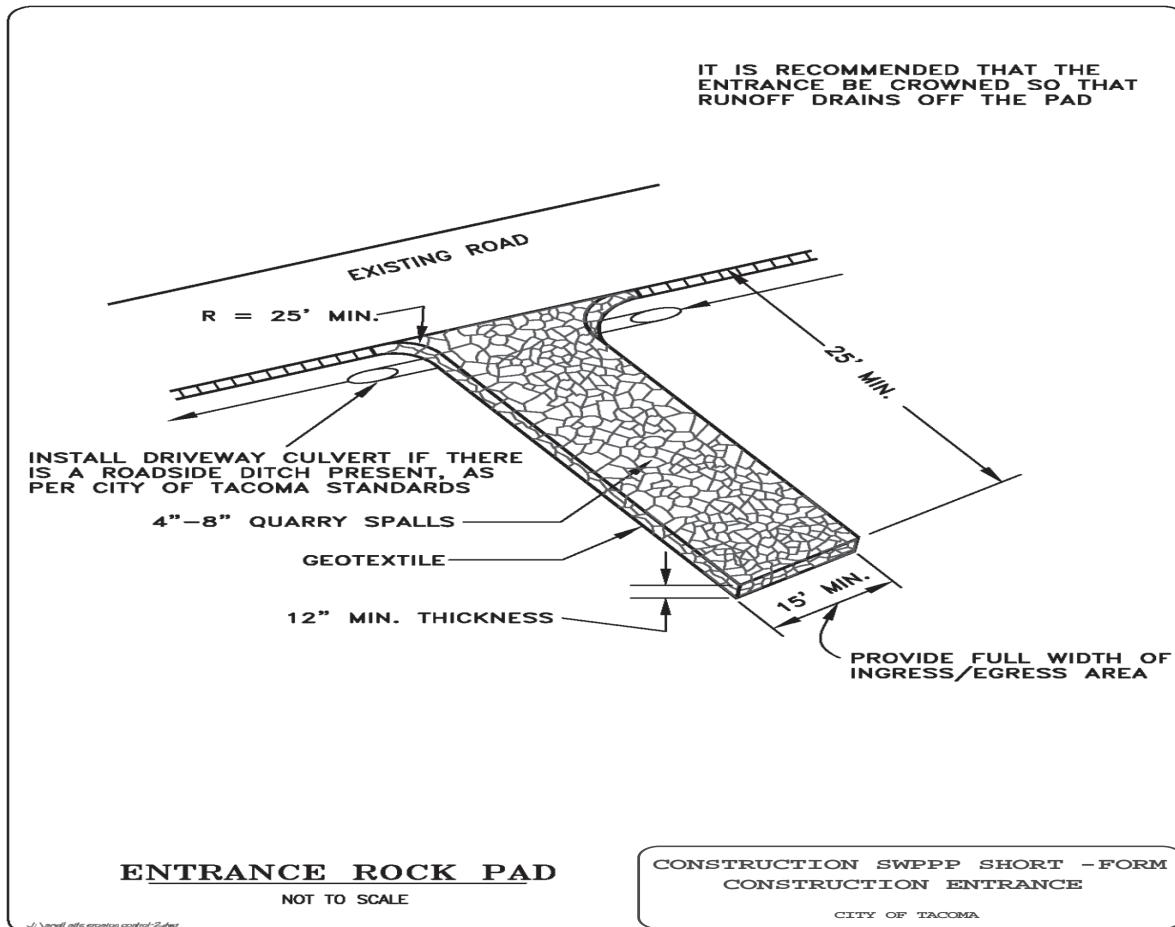
Construction entrances are stabilized to reduce the amount of sediment transported onto paved roads by vehicles or equipment by constructing a stabilized pad of quarry spalls at entrances and exits to construction sites.

3.1.4.2 Conditions of Use

Construction entrances shall be stabilized wherever traffic will be leaving a construction site and traveling on paved roads or other paved areas within 1,000 feet of the site.

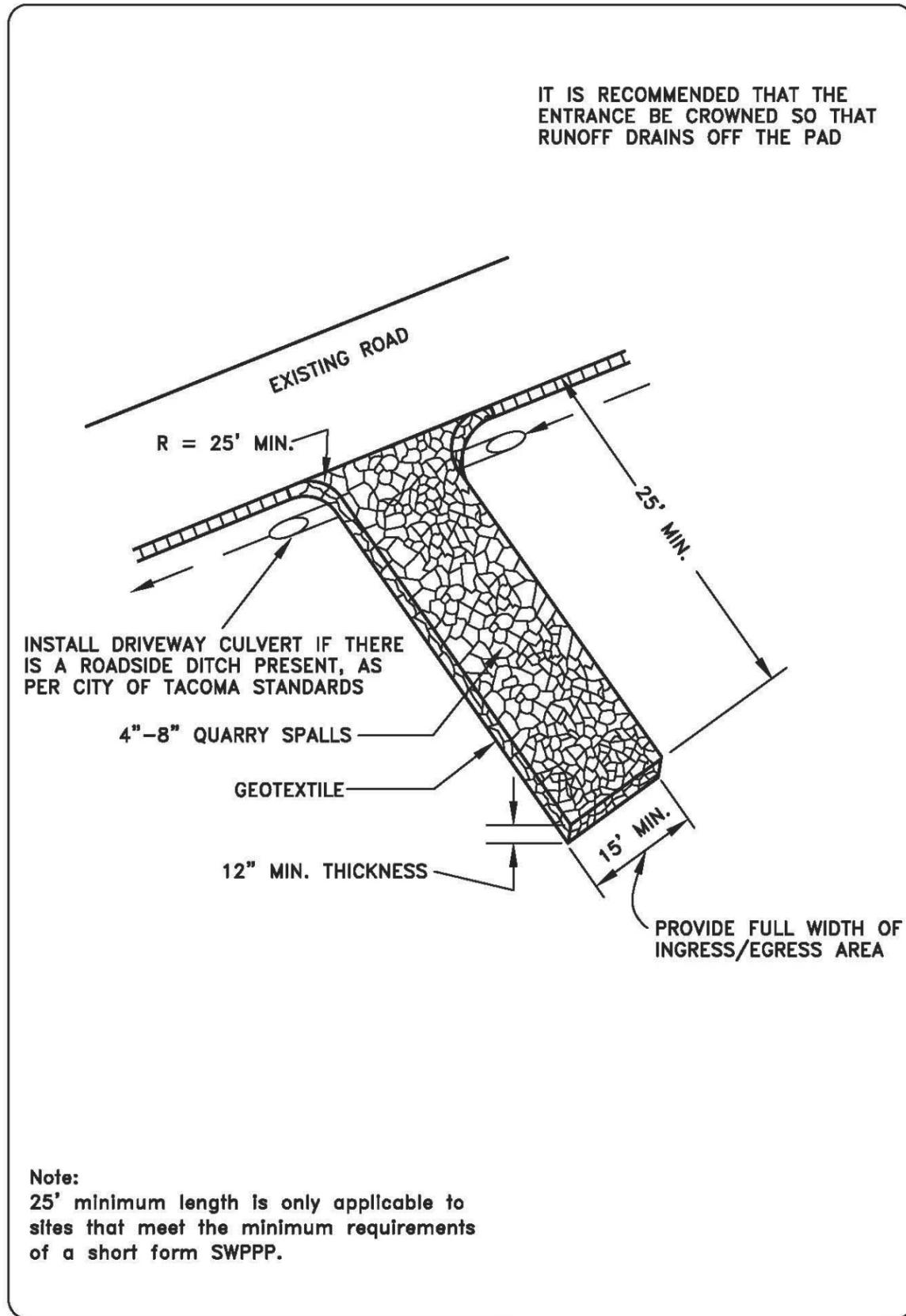
Construction vehicle ingress and egress shall be limited to one route. Additional routes may be allowed for very large projects or linear projects.

For residential construction provide stabilized construction entrances/exits for each residence. Stabilized surfaces shall be of sufficient length/width to provide vehicle access/parking based upon lot size and configuration. See Figure 2 - 2.


3.1.4.3 Design and Installation Specifications

- See Figure 2 - 1 and Figure 2 - 2 for details. Reduce the length of the entrance to the maximum practicable size when the size or configuration of the site does not allow the full 100-foot length. Consult with the Erosion and Sediment Control Lead (ESCL) to determine if reducing the length of the entrance is acceptable.
- Construct stabilized construction entrance with a 12-inch thick pad of 4-inch to 8-inch quarry spalls, a 4-inch course of asphalt treated base (ATB), or using existing pavement. Protect permeable pavement surfaces per Element #13 as applicable. Do not use crushed concrete, cement, or calcium chloride for construction entrances stabilization.

- Place a separation geotextile under the spalls to prevent fine sediment from pumping up into the rock pad. The geotextile shall meet the following standards:
 - Grab Tensile Strength (ASTM D4751) – 200 psi min.
 - Grab Tensile Elongation (ASTM D4632) – 30% max.
 - Mullen Burst Strength (ASTM D3786-80a) – 400 psi min.
 - AOS (ASTM D4751) – 20 to 45 (U.S. standard sieve size)
- Consider early installation of the first lift of asphalt or extra concrete in areas that will be paved; this can be used as a stabilized entrance.
- Install fencing (see BMPs C103) as necessary to restrict traffic to the construction entrance.
- Whenever possible, construct the entrance on a firm, compacted subgrade. This can substantially increase the effectiveness of the pad and reduce the need for maintenance.
- If possible, install the stabilized construction entrance on the uphill side of the site so that stormwater will not pond near the stabilized construction entrance.
- Construction entrance should avoid crossing existing sidewalks if possible. If a construction entrance must cross a sidewalk, the sidewalk must be covered and protected from sediment leaving the site.


3.1.4.4 Maintenance Standards

- Add quarry spalls if the pad is no longer in accordance with the specifications.
- If the entrance is not preventing sediment from being tracked onto pavement, then alternative measures to keep the streets free of sediment shall be used. This may include street sweeping, an increase in the dimensions of the entrance, or the installation of a wheel wash.
- No tracking of sediment onto the roadway is allowed. If sediment is tracked onto the road, immediately clean the road thoroughly by shoveling or pickup sweeping. Transport sediment to a controlled sediment disposal area.
- Perform street sweeping by hand or with a high efficiency sweeper. Do not use a non-high efficiency mechanical sweeper because this creates dust and throws soils into storm systems or conveyance ditches.
- Keep streets clean at ALL times. Clean tracked sediment immediately.
- Street washing of sediment to the storm drain system is not allowed.
- If sediment is discharged to the stormwater system it is the responsibility of the applicant to clean the downstream system.
- Immediately remove any quarry spalls that are loosened from the pad and end up on the roadway.
- Install fencing if vehicles are entering or exiting the site at points other than the construction entrance(s).
- Upon project completion and site stabilization, permanently stabilize all construction accesses intended as permanent access for maintenance.

Figure 2 - 1. Stabilized Construction Entrance

Figure 2 - 2 shows a small site, stabilized construction entrance.

3.1.5 BMP C106: Wheel Wash

3.1.5.1 Purpose

Wheel washes reduce the amount of sediment transported onto paved roads by motor vehicles.

3.1.5.2 Conditions of Use

- Can be used when a stabilized construction entrance (see BMP C105) is not preventing sediment from being tracked onto pavement.
- Wheel washing is generally an effective BMP when installed with careful attention to topography. For example, a wheel wash can be detrimental if installed at the top of a slope abutting a right-of-way where the water from the dripping truck can run unimpeded into the street.
- Pressure washing combined with an adequately sized and surfaced pad with direct drainage to a large 10-foot x 10-foot sump can be very effective.
- Discharge wheel wash or tire bath wastewater to a separate onsite treatment system that prevents discharge to surface water or to the wastewater system with a City of Tacoma Special Approved Discharge permit.
- Wheel wash or tire bath wastewater shall not include wastewater from concrete washout areas.

3.1.5.3 Design and Installation Specifications

- Suggested details are shown in Figure 2 - 3. The City may allow other designs. A minimum of 6 inches of asphalt treated base (ATB) over crushed base material or 8 inches over a good subgrade is recommended to pave the wheel wash.
- Use a low clearance truck to test the wheel wash before paving. Either a belly dump or lowboy will work well to test clearance.
- Keep the water level from 12 to 14 inches deep to avoid damage to truck hubs and filling the truck tongues with water.
- Midpoint spray nozzles are only needed in extremely muddy conditions.
- Design wheel wash systems with a small grade change, 6 to 12 inches for a 10-foot-wide pond, to allow sediment to flow to the low side of pond to help prevent re-suspension of sediment. A drainpipe with a 2- to 3-foot riser should be installed on the low side of the pond to allow for easy cleaning and refilling. Polymers may be used to promote coagulation and flocculation in a closed-loop system. Polyacrylamide (PAM) added to the wheel wash water at a rate of 0.25 - 0.5 pounds per 1,000 gallons of water increases effectiveness and reduces cleanup time. If PAM is already being used for dust or erosion control and is being applied by a water truck, the same truck can be used to change the wash water.

3.1.5.4 Maintenance Standards

- The wheel wash should start out the day with fresh water.
- The wash water should be changed as necessary with a minimum of once per day. On large earthwork jobs where more than 10-20 trucks per hour are expected, the wash water will need to be changed more often.
- Wheel wash or tire bath wastewater shall be discharged to a separate onsite treatment system, such as closed-loop recirculation or land application, or to the sanitary sewer with a City of Tacoma Special Approved Discharge permit.

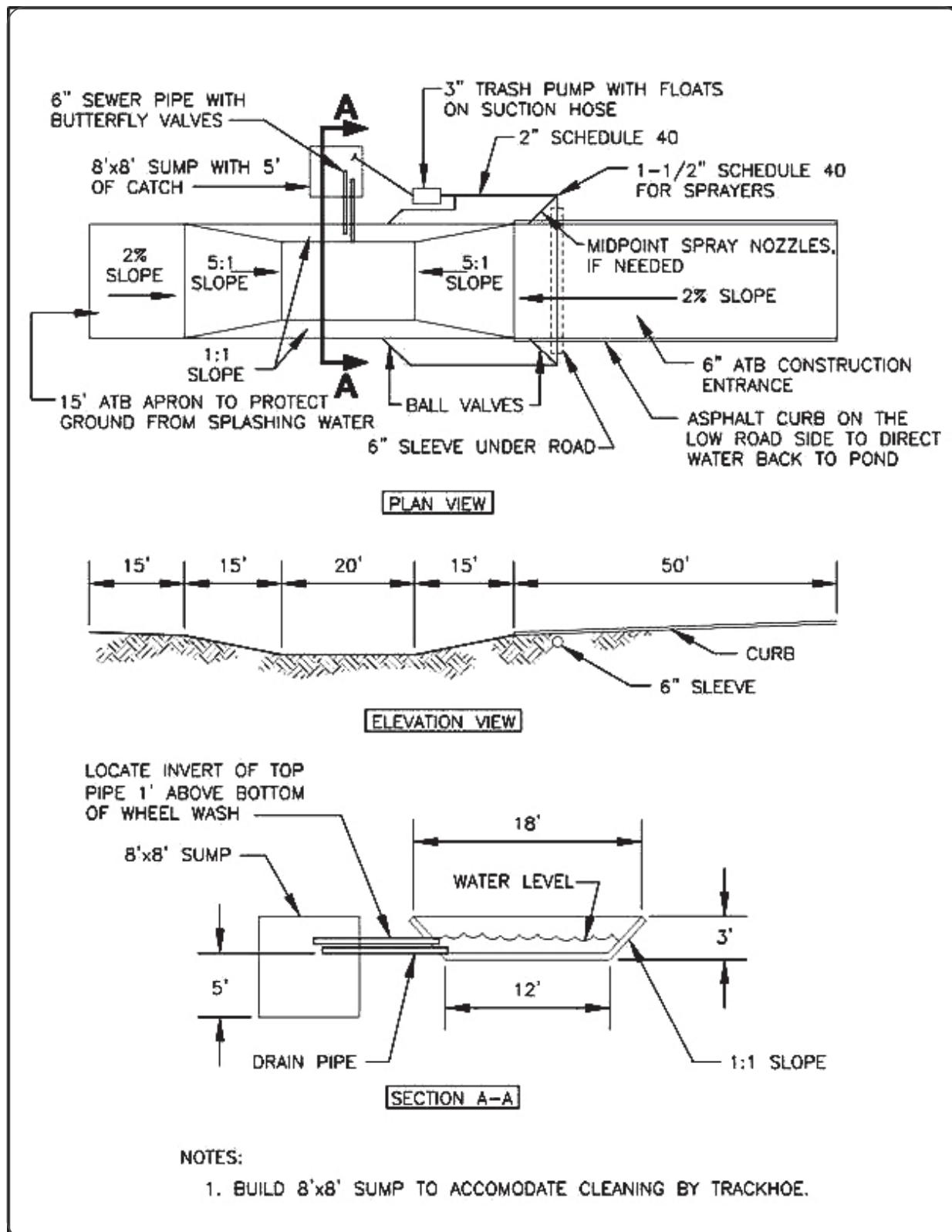


Figure 2 - 3. Wheel Wash

3.1.10 BMP C123: Plastic Covering

3.1.10.1 Purpose

Plastic covering provides immediate, short-term erosion protection to slopes and disturbed areas.

3.1.10.2 Conditions of Use

- Plastic covering may be used on disturbed areas that require cover measures for less than 30 days, except as stated below.
- Plastic is particularly useful for protecting cut and fill slopes and stockpiles.
- The relatively rapid breakdown of most polyethylene sheeting makes it unsuitable for long-term (greater than six months) applications.
- Clear plastic sheeting can be used over newly-seeded areas to create a greenhouse effect and encourage grass growth if the hydroseed was installed too late in the season to establish 75 percent grass cover, or if the wet season started earlier than normal. Clear plastic should not be used for this purpose during the summer months because the resulting high temperatures can kill the grass.
- Due to rapid runoff caused by plastic covering, this method shall not be used upslope of areas that might be adversely impacted by concentrated runoff. Such areas include steep and/or unstable slopes.
- Whenever plastic is used to protect slopes, water collection measures must be installed at the base of the slope. These measures include plastic-covered berms, channels, and pipes used to convey clean rainwater away from bare soil and disturbed areas. At no time is clean runoff from a plastic covered slope to be mixed with dirty runoff from a project.
- Other uses for plastic include:
 - Temporary ditch liner;
 - Pond liner in temporary sediment pond;
 - Liner for bermed temporary fuel storage area if plastic is not reactive to the type of fuel being stored;
 - Emergency slope protection during heavy rains; and
 - Temporary drainpipe (“elephant trunk”) used to direct water.

3.1.10.3 Design and Installation Specifications

See Figure 3.1.11.

Plastic slope cover must be installed as follows:

- Run plastic up and down slope, not across slope.
- Plastic may be installed perpendicular to a slope if the slope length is less than 10 feet.
- Minimum of 8-inch overlap at seams.
- On long or wide slopes, or slopes subject to wind, all seams should be taped.
- Place plastic into a small (12-inch wide by 6-inch deep) slot trench at the top of the slope and backfill with soil to keep water from flowing underneath.

- Place sand filled burlap or geotextile bags every 3 to 6 feet along seams and pound a wooden stake through each to hold them in place. Alternative options for holding plastic in place exist and may be considered with COT approval.
- Inspect plastic for rips, tears, and open seams regularly and repair immediately. This prevents high velocity runoff from contacting bare soil, which causes extreme erosion;
- Plastic sheeting shall have a minimum thickness of 6 mil.
- If erosion at the toe of a slope is likely, a gravel berm, riprap, or other suitable protection shall be installed at the toe of the slope in order to reduce the velocity of runoff.

3.1.10.4 Maintenance Standards

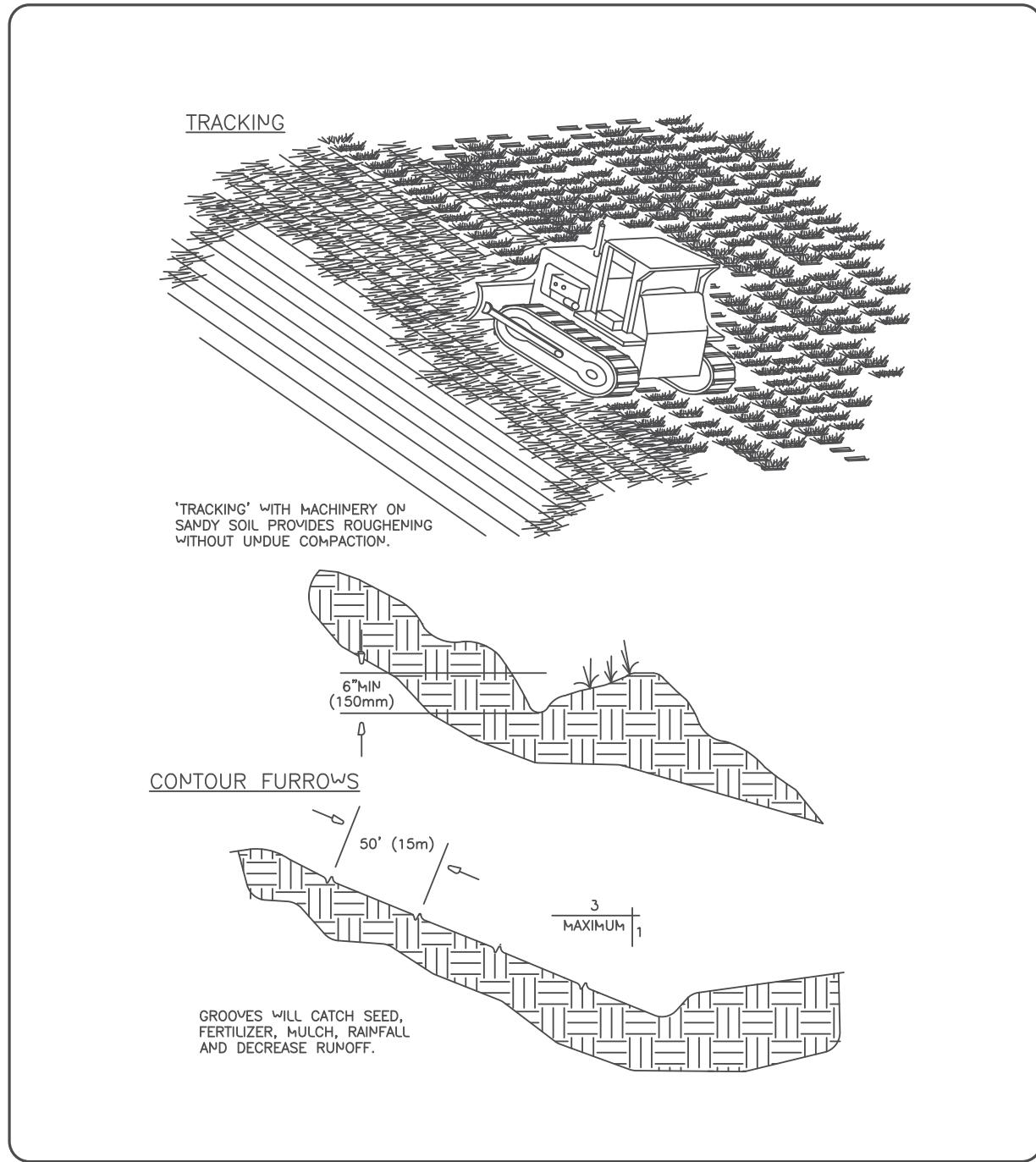
- Torn sheets must be replaced and open seams repaired.
- If the plastic begins to deteriorate due to ultraviolet radiation, it must be completely removed and replaced.
- When the plastic is no longer needed, it shall be completely removed.
- Properly dispose of products used to weigh down covering.

3.1.15 BMP C130: Surface Roughening

3.1.15.1 Purpose

Surface roughening aids in the establishment of vegetative cover, reduces runoff velocity, increases infiltration, and provides for sediment trapping through the provision of a rough soil surface. Horizontal depressions are created by operating a tiller or other suitable equipment on the contour or by leaving slopes in a roughened condition by not fine grading them.

3.1.15.2 Conditions for Use


- All slopes steeper than 3H:1V and greater than 5 vertical feet require surface roughening.
- Areas with grades steeper than 3H:1V should be roughened to a depth of 2 to 4 inches prior to seeding.
- Areas that will not be stabilized immediately may be roughened to reduce runoff velocity until seeding takes place.
- Slopes with a stable rock face do not require roughening.
- Slopes where mowing is planned should not be excessively roughened.

3.1.15.3 Design and Installation Specifications

- There are different methods for achieving a roughened soil surface on a slope, and the selection of an appropriate method depends upon the type of slope. Roughening methods include stair-step grading, grooving, contour furrows, and tracking. See Figure 2 - 6 for tracking and contour furrows. Factors to be considered in choosing a method are slope steepness, mowing requirements, and whether the slope is formed by cutting or filling.
- Disturbed areas that will not require mowing may be stair-step graded, grooved, or left rough after filling.
- Stair-step grading is particularly appropriate in soils containing large amounts of soft rock. Each "step" catches material that sloughs from above, and provides a level site where vegetation can become established. Stairs should be wide enough to work with standard earth moving equipment. Stair steps must be on contour or gullies will form on the slope.
- Areas that will be mowed (these areas should have slopes less steep than 3:1) may have small furrows left by disking, harrowing, raking, or seed-planting machinery operated on the contour.
- Graded areas with slopes greater than 3:1 but less than 2:1 should be roughened before seeding. This can be accomplished in a variety of ways, including "track walking," or driving a crawler tractor up and down the slope, leaving a pattern of cleat imprints parallel to slope contours.
- Tracking is done by operating equipment up and down the slope to leave horizontal depressions in the soil.

3.1.15.4 Maintenance Standards

- Areas that are graded in this manner should be seeded as quickly as possible.
- Regular inspections should be made of the area. If rills appear, they should be re-graded and re-seeded immediately.

Figure 2 - 6. Surface Roughening by Tracking and Contour Furrows

3.1.16 BMP C131: Gradient Terraces

3.1.16.1 Purpose

Gradient terraces reduce erosion damage by intercepting surface runoff and conducting it to a stable outlet at a non-erosive velocity.

3.1.17 BMP C140: Dust Control

3.1.17.1 Purpose

Dust control prevents wind transport of dust from disturbed soil surfaces onto roadways, drainage ways, and surface waters.

3.1.17.2 Conditions of Use

Use dust control practices in areas (including roadways) subject to surface and air movement of dust where onsite and offsite impacts to roadways, drainage ways, or surface waters are likely.

3.1.17.3 Design and Installation Specifications

- Vegetate or mulch areas that will not receive vehicle traffic. In areas where planting, mulching, or paving is impractical, apply gravel or landscaping rock.
- Limit dust generation by clearing only to those areas where immediate activity will take place, leaving the remaining area(s) in the original condition, if stable. Maintain the original ground cover as long as practical.
- Construct natural or artificial windbreaks or windscreens. These may be designed as enclosures for small dust sources.
- Sprinkle the site with water until surface is wet. Repeat as needed. To prevent carryout of mud onto street, refer to Stabilized Construction Entrance (BMP C105).

- Irrigation water can be used for dust control. Install irrigation systems as a first step on sites where dust control is a concern.
- Spray exposed soil areas with a dust palliative, following the manufacturer's instructions and cautions regarding handling and application. Used oil is prohibited from use as a dust suppressant. The City may approve other dust palliatives such as calcium chloride or PAM.
- PAM (BMP C127) added to water at a rate of 2/3 pounds per 1,000 gallons of water per acre and applied from a water truck is more effective than water alone. This is due to the increased infiltration of water into the soil and reduced evaporation. In addition, small soil particles are bonded together and are not as easily transported by wind. Adding PAM may actually reduce the quantity of water needed for dust control. There are concerns with the proper use of PAM, refer to BMP C127 for more information on PAM application. PAM use requires COT approval.
- Lower speed limits. High vehicle speed increases the amount of dust stirred up from unpaved roads and lots.
- Upgrade the road surface strength by improving particle size, shape, and mineral types that make up the surface and base materials.
- Add surface gravel to reduce the source of dust emission. Limit the amount of fine particles to 10 to 20 percent.
- Use geotextile fabrics to increase the strength of new roads or roads undergoing reconstruction.
- Encourage the use of alternate, paved routes, if available.
- Restrict use of paved roadways by tracked vehicles and heavy trucks to prevent damage to road surfaces and bases.
- Apply chemical dust suppressants using the admix method, blending the product with the top few inches of surface material. Suppressants may also be applied as surface treatments.
- Pave unpaved permanent roads and other trafficked areas.
- Use vacuum street sweepers.
- Remove mud and other dirt promptly so it does not dry and then turn into dust.
- Limit dust-causing work on windy days.
- Contact the Puget Sound Clean Air Agency for guidance and training on other dust control measures. Compliance with the Puget Sound Clean Air Agency's recommendations/requirements constitutes compliance with this BMP.

3.1.17.4 Maintenance Standards

Evaluate the potential for dust generation frequently during dry periods. Complete the actions outlined above as needed to limit the dust.

Any dust which leaves the site must be cleaned immediately.

3.1.18 BMP C150: Materials On Hand

3.1.18.1 Purpose

Quantities of erosion prevention and sediment control materials should be kept on the project site at all times to be used for regular maintenance and emergency situations such as unexpected

heavy summer rains. Having these materials onsite reduces the time needed to implement BMPs when inspections indicate that existing BMPs are not meeting the Construction SWPPP requirements.

3.1.18.2 Conditions of Use

Construction projects of any size or type can benefit from having materials on hand. A small commercial development project could have a roll of plastic and some gravel available for immediate protection of bare soil and temporary berm construction. A large earthwork project, such as highway construction, might have several tons of straw, several rolls of plastic, flexible pipe, sandbags, geotextile fabric, and steel "T" posts.

- Materials are stockpiled and readily available before any site clearing, grubbing, or earthwork begins. A large contractor or developer could keep a stockpile of materials that are available to be used on several projects.
- If storage space at the project site is at a premium, the contractor could maintain the materials at a location less than one hour from the project site.

3.1.18.3 Design and Installation Specifications

Depending on project type, size, complexity, and length, materials and quantities will vary. Table 2 - 9 provides a good minimum that will cover numerous situations.

Table 2 - 9: Materials on Hand

Material	Measure	Quantity
Clear Plastic, 6 mil	100 foot roll	1-2
Drainpipe, 6 or 8 inch diameter	25 foot section	4-6
Sandbags, filled	each	25-50
Quarry Spalls	ton	2-4
Washed Gravel	cubic yard	2-4
Geotextile Fabric	100 foot roll	1-2
Catch Basin Inserts	each	2-4
Steel "T" Posts	each	12-24

3.1.18.4 Maintenance Standards

- All materials with the exception of the quarry spalls, steel "T" posts, and gravel should be kept covered and out of both sun and rain.
- Re-stock materials used as needed.

3.1.20 BMP C152: Sawcutting and Surfacing Pollution Prevention

3.1.20.1 Purpose

Sawcutting and surfacing operations generate slurry and process water that contains fine particles and high pH (concrete cutting), both of which can violate water quality standards in the receiving water. This BMP is intended to minimize and eliminate process water and slurry from entering waters of the State

3.1.20.2 Conditions of Use

Anytime sawcutting or surfacing operations take place, use these management practices. Sawcutting and surfacing operations include, but are not limited to, the following:

- Sawing
- Coring
- Grinding
- Roughening
- Hydro-demolition
- Bridge and road surfacing

3.1.20.3 Design and Installation Specifications

- Vacuum slurry and cuttings during cutting and surfacing operations.
- Do not leave slurry and cuttings on permanent concrete or asphalt pavement overnight.
- Do not drain slurry and cuttings to any natural or constructed drainage conveyance.
- Dispose of collected slurry and cuttings in a manner that does not violate groundwater or surface water quality standards.
- Do not drain process water that is generated during hydro-demolition, surface roughening, or similar operations to any natural or constructed drainage conveyance. Dispose of process water in a manner that does not violate groundwater or surface water quality standards.
- Handle and dispose of cleaning waste material and demolition debris in a manner that does not cause contamination of water. If the area is swept with a pick-up sweeper, haul the material out of the area to an appropriate disposal site.

3.1.20.4 Maintenance Standards

Continually monitor operations to determine whether slurry, cuttings, or process water could enter waters of the state. If inspections show that a violation of water quality standards could occur, stop operations and immediately implement preventive measures such as berms, barriers, secondary containment, and vacuum trucks.

3.1.21 BMP C153: Material Delivery, Storage and Containment

3.1.21.1 Purpose

Prevent, reduce, or eliminate the discharge of pollutants from material delivery and storage to the stormwater system or watercourses by minimizing the storage of hazardous materials onsite, storing materials in a designated area, and installing secondary containment.

3.1.21.2 Conditions of Use

These procedures are suitable for use at all construction sites with delivery and storage of the following materials:

- Petroleum products such as fuel, oil, and grease
- Soil stabilizers and binders (e.g. Polyacrylamide)
- Fertilizers, pesticides, and herbicides
- Detergents
- Asphalt and concrete compounds
- Hazardous chemicals such as acids, lime, adhesives, paints, solvents, and curing compounds
- Any other material that may be detrimental if released to the environment

3.1.21.3 Design and Installation Specifications

The following steps should be taken to minimize risk:

- Locate temporary storage area away from vehicular traffic, near the construction entrance(s), and away from waterways or storm drains.
- Supply Material Safety Data Sheets (MSDS) for all materials stored. Keep chemicals in their original labeled containers.
- Surrounding materials with earth berms is an option for temporary secondary containment.
- Minimize hazardous material storage onsite.
- Handle hazardous materials as infrequently as possible.
- During the wet weather season (October 1 through April 30), consider storing materials in a covered area.
- Store materials in secondary containment, such as an earthen dike, a horse trough, or a children's wading pool for non-reactive materials such as detergents, oil, grease, and paints. "Bus boy" trays or concrete mixing trays may be used as secondary containment for small amounts of material.
- Do not store chemicals, drums, or bagged materials directly on the ground. Place these items on a pallet and, when possible, in secondary containment.
- If drums cannot be stored under a roof, domed plastic covers are inexpensive and snap to the top of drums, preventing water from collecting.

3.1.21.4 Material Storage Areas and Secondary Containment Practices:

- Store liquids, petroleum products, and substances listed in 40 CFR Parts 110, 117, or 302 in approved containers and drums and do not overfill the containers or drums. Store containers and drums in temporary secondary containment facilities.
- Temporary secondary containment facilities shall provide for a spill containment volume able to contain precipitation from a 25 year, 24 hour storm event plus 10% of the total enclosed container volume of all containers, or 110% of the capacity of the largest container within its boundary, whichever is greater.

- Secondary containment facilities shall be impervious to the materials stored therein for a minimum contact time of 72 hours.
- Secondary containment facilities shall be maintained free of accumulated rainwater and spills. In the event of spills or leaks, collect accumulated rainwater and spills and place into drums. Handle these liquids as hazardous waste unless testing determines them to be non-hazardous. Dispose of all wastes properly.
- Provide sufficient separation between stored containers to allow for spill cleanup and emergency response access.
- During the wet weather season (October 1 through April 30), cover each secondary containment facility during non-working days, prior to and during rain events.
- Keep material storage areas clean, organized, and equipped with an ample supply of appropriate spill clean-up material.
- The spill kit should include, at a minimum:
 - 1 water resistant nylon bag
 - 3 oil absorbent socks (3-inches by 4-feet)
 - 2 oil absorbent socks (3-inches by 10-feet)
 - 12 oil absorbent pads (17-inches by 19-inches)
 - 1 pair splash resistant goggles
 - 3 pairs nitrile gloves
 - 10 disposable bags with ties
 - Instructions

3.1.21.5 Maintenance

Any stormwater within the material storage area shall be pumped or otherwise discharged after each rain event. Before pumping, the stormwater must be evaluated to determine if it must go to treatment or can be discharged without treatment. If stormwater is contaminated, direct the discharge to appropriate treatment.

3.2.11 BMP C220: Storm Drain Inlet Protection

3.2.11.1 Purpose

To prevent coarse sediment from entering drainage systems prior to permanent stabilization of the disturbed area.

3.2.11.2 Conditions of Use

- Where storm drain inlets are to be made operational before permanent stabilization of the disturbed drainage area.
- Provide protection for all storm drain inlets downslope and within 500 feet of a disturbed or construction area, unless the runoff that enters the catch basin will be conveyed to a sediment pond or trap. Inlet protection may be used anywhere to protect the drainage system. It is likely that the drainage system will still require cleaning.
- Table 2 - 11 lists several options for inlet protection. All of the methods for storm drain inlet protection are prone to plugging and require a high frequency of maintenance. Drainage areas should be limited to 1 acre or less. Emergency overflows may be required where stormwater ponding would cause a hazard. If an emergency overflow is provided, additional end-of-pipe treatment may be required.
- Only bag filter type catch basin filters (per Section 3.2.11.3) are allowed within the right of way.

Table 2 - 11: Storm Drain Inlet Protection

Type of Inlet Protection	Emergency Overflow	Applicable for Paved/Earthen Surfaces	Conditions of Use
Excavated drop inlet protection	Yes, temporary flooding will occur	Earthen	Applicable for heavy flows. Easy to maintain. Large area requirement: 30' x 30' per acre.
Block and gravel drop filter	Yes	Paved or earthen	Applicable for heavy concentrated flows. Will not pond.
Gravel and mesh filter	No	Paved	Applicable for heavy concentrated flows. Will pond. Can withstand traffic.
Catch basin filters	Yes	Paved or earthen	Frequent maintenance required.
Curb inlet protection with a wooden weir	Small capacity overflow	Paved	Used for sturdy, more compact installation.
Block and gravel curb inlet protection	Yes	Earthen	Sturdy, but limited filtration.
Culvert inlet sediment trap			18-month expected life.

3.2.11.3 Design and Installation Specifications

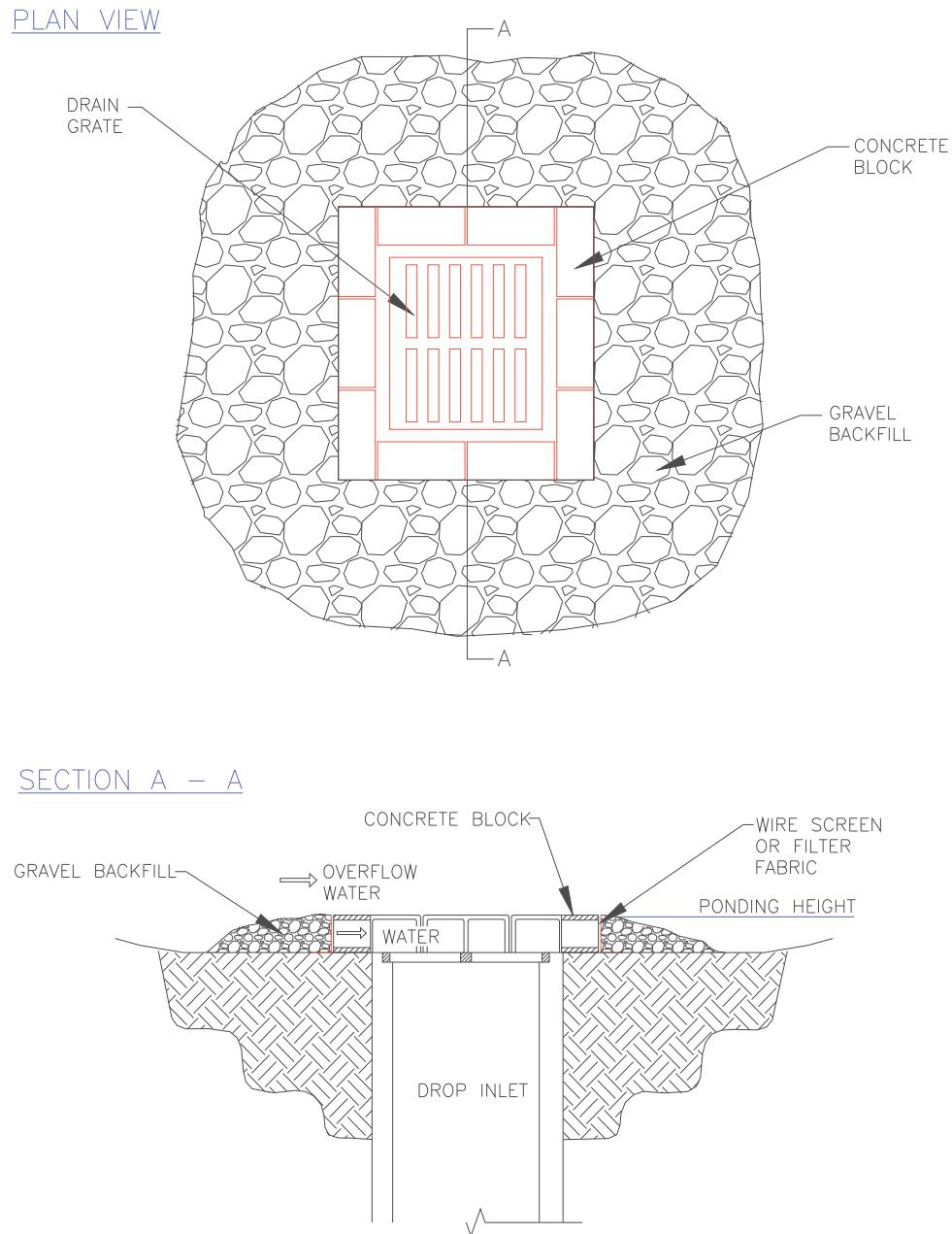
Excavated Drop Inlet Protection

- An excavated impoundment around the storm drain. Sediment settles out of the stormwater prior to entering the storm drain.

- Provide depth of 1 to 2 feet, as measured from the crest of the inlet structure.
- Slope sides of excavation no steeper than 2H:1V.
- Minimum volume of excavation 35 cubic yards.
- Shape basin to fit site with longest dimension oriented toward the longest inflow area.
- Install provisions for draining to prevent standing water problems.
- Clear the area of all debris.
- Grade the approach to the inlet uniformly.
- Drill weep holes into the side of the inlet.
- Protect weep holes with screen wire and washed aggregate.
- Seal weep holes when removing structure and stabilizing area.
- It may be necessary to build a temporary dike to the down slope side of the structure to prevent bypass flow.

Block and Gravel Filter

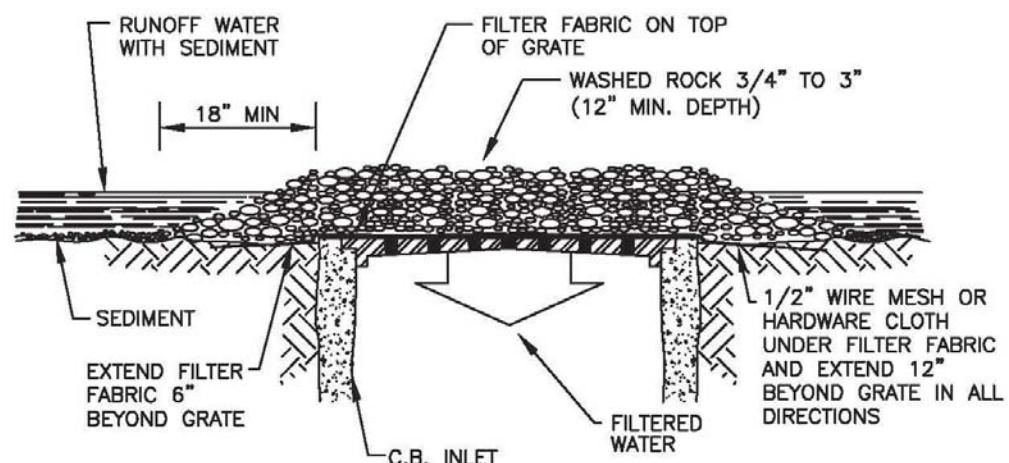
- A barrier formed around the storm drain inlet with standard concrete blocks and gravel. See Figure 2 - 18.
- Provide a height 1 to 2 feet above inlet.
- Recess the first row 2 inches into the ground for stability.
- Support subsequent courses by placing a piece of 2x4 lumber through the block opening.
- Do not use mortar.
- Lay some blocks in the bottom row on their side for dewatering the pool.
- Place hardware cloth or comparable wire mesh with ½-inch openings over all block openings.
- Place gravel just below the top of blocks on slopes of 2H:1V or flatter.
- An alternative design is a gravel donut.
- Provide an inlet slope of 3H:1V.
- Provide an outlet slope of 2H:1V.
- Provide a 1-foot wide level stone area between the structure and the inlet.
- Use inlet slope stones 3 inches in diameter or larger.
- For outlet slope use gravel ½- to ¾-inch at a minimum thickness of 1-foot.

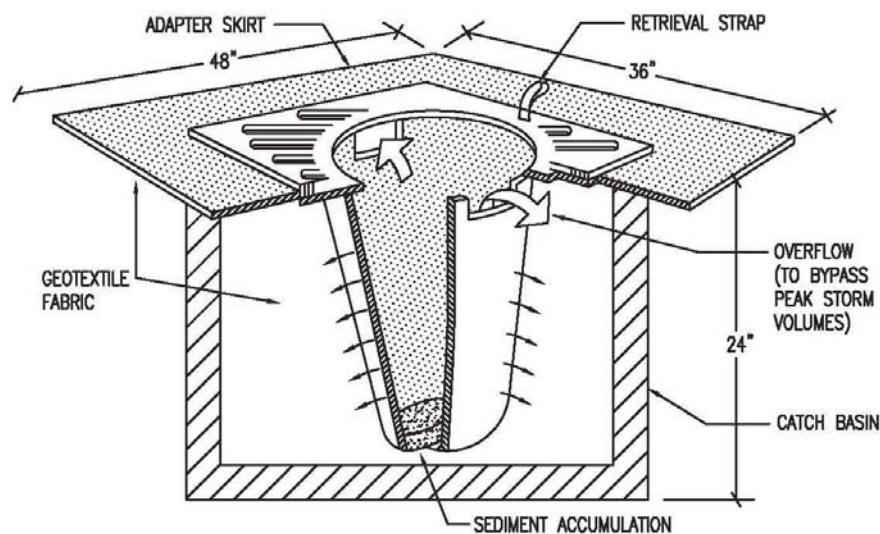

Gravel and Wire Mesh Filter

- A gravel barrier placed over the top of the inlet (see Figure 2 - 19). This structure does not provide an overflow.
- Use hardware cloth or comparable wire mesh with ½-inch openings.
- Use coarse aggregate.
- Place wire mesh over the drop inlet so that the wire extends a minimum of 1-foot beyond each side of the inlet structure.
- If more than one strip of mesh is necessary, overlap the strips.

- Place coarse aggregate over the wire mesh.
- The depth of the gravel should be at least 12 inches over the entire inlet opening and extend at least 18 inches on all sides.

Catchbasin Filters


- Inserts (Figure 2 - 20) shall be designed by the manufacturer for use at construction sites. The limited sediment storage capacity increases the frequency of inspection and maintenance required, which may be daily for heavy sediment loads. The maintenance requirements can be reduced by combining a catchbasin filter with another type of inlet protection. This type of inlet protection provides flow bypass without overflow and therefore may be a better method for inlets located along active rights-of-way.
- Provide a minimum of 5 cubic feet of storage.
- Requires dewatering provisions.
- Provide a high-flow bypass that will not clog under normal use at a construction site.
- The catchbasin filter is inserted in the catchbasin just below the grating.
- Only bag filter type catch basin filters are allowed in the City right-of-way.


NOTE:

1. DROP INLET SEDIMENT BARRIERS ARE TO BE USED FOR SMALL, NEARLY LEVEL DRAINAGE AREAS. (LESS THAN 5%)
2. EXCAVATE A BASIN OF SUFFICIENT SIZE ADJACENT TO THE INLET.
3. THE TOP OF THE STRUCTURE (POND HEIGHT) MUST BE WELL BELOW THE GROUND ELEVATION DOWNSLOPE TO PREVENT RUNOFF FROM BYPASSING THE INLET. A TEMPORARY DIKE MAY BE NECESSARY ON THE DOWNSLOPE SIDE OF THE STRUCTURE.

Figure 2 - 18. Drop Inlet with Block and Gravel Filter

Figure 2 - 19. Gravel and Wire Mesh Filter

INLET PROTECTION NOTES:

1. FILTERS SHALL BE INSPECTED AFTER EACH STORM EVENT AND CLEANED OR REPLACED WHEN 1/3 FULL.

BAG FILTER

NOT TO SCALE

Figure 2 - 20. Catchbasin Filter

Curb Inlet Protection with Wooden Weir

Barrier formed around a curb inlet with a wooden frame and gravel.

- Use wire mesh with ½-inch openings.
- Use extra strength filter cloth.
- Construct a frame.
- Attach the wire and filter fabric to the frame.
- Pile coarse washed aggregate against the wire and fabric.
- Place weight on frame anchors.

Block and Gravel Curb Inlet Protection

Barrier formed around an inlet with concrete blocks and gravel. See Figure 2 - 21.

- Use wire mesh with ½-inch openings.
- Place two concrete blocks on their sides abutting the curb at either side of the inlet opening. These are spacer blocks.
- Place a 2x4 stud through the outer holes of each spacer block to align the front blocks.
- Place blocks on their sides across the front of the inlet and abutting the spacer blocks.
- Place wire mesh over the outside vertical face.
- Pile coarse aggregate against the wire to the top of the barrier.

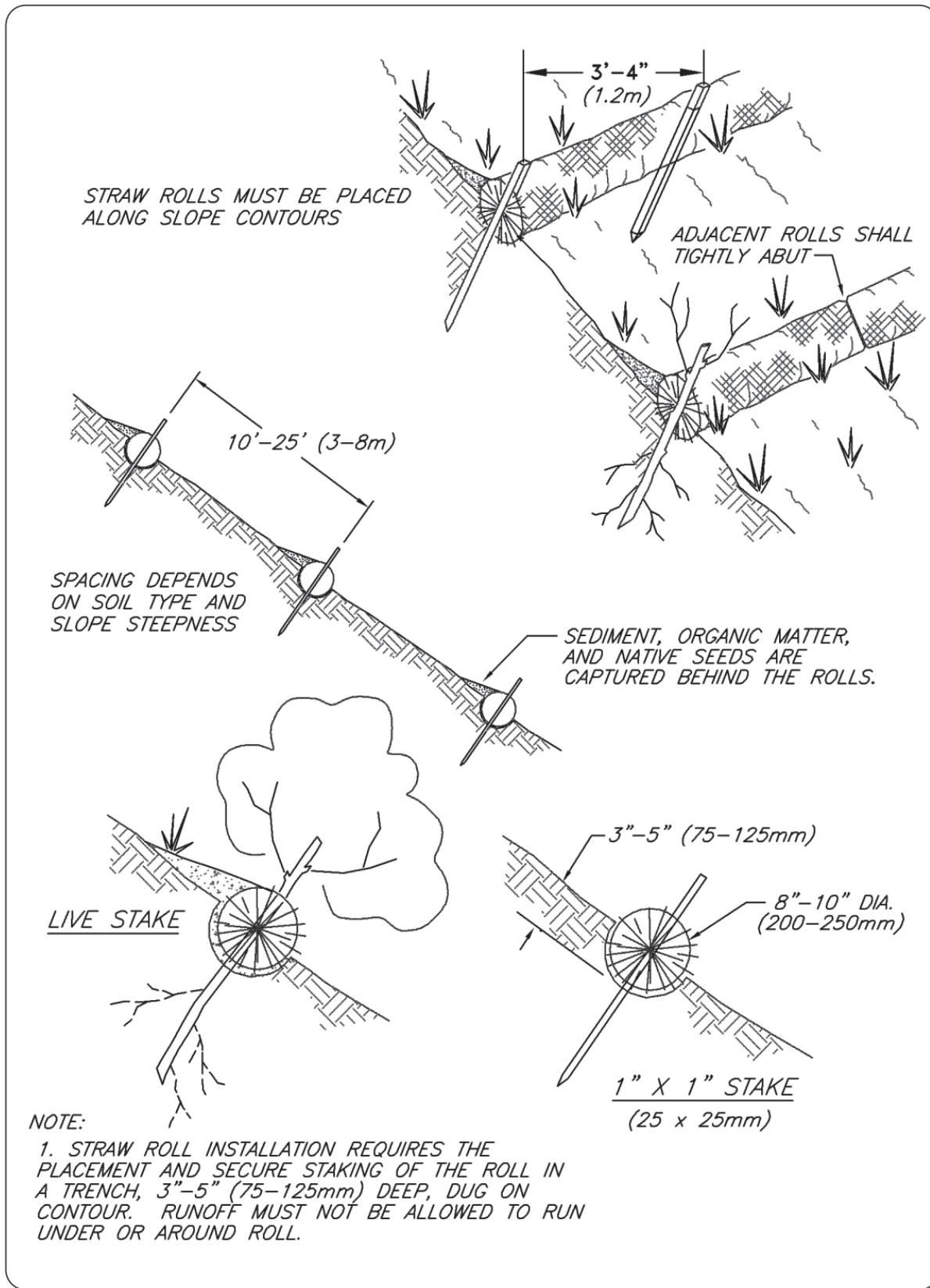
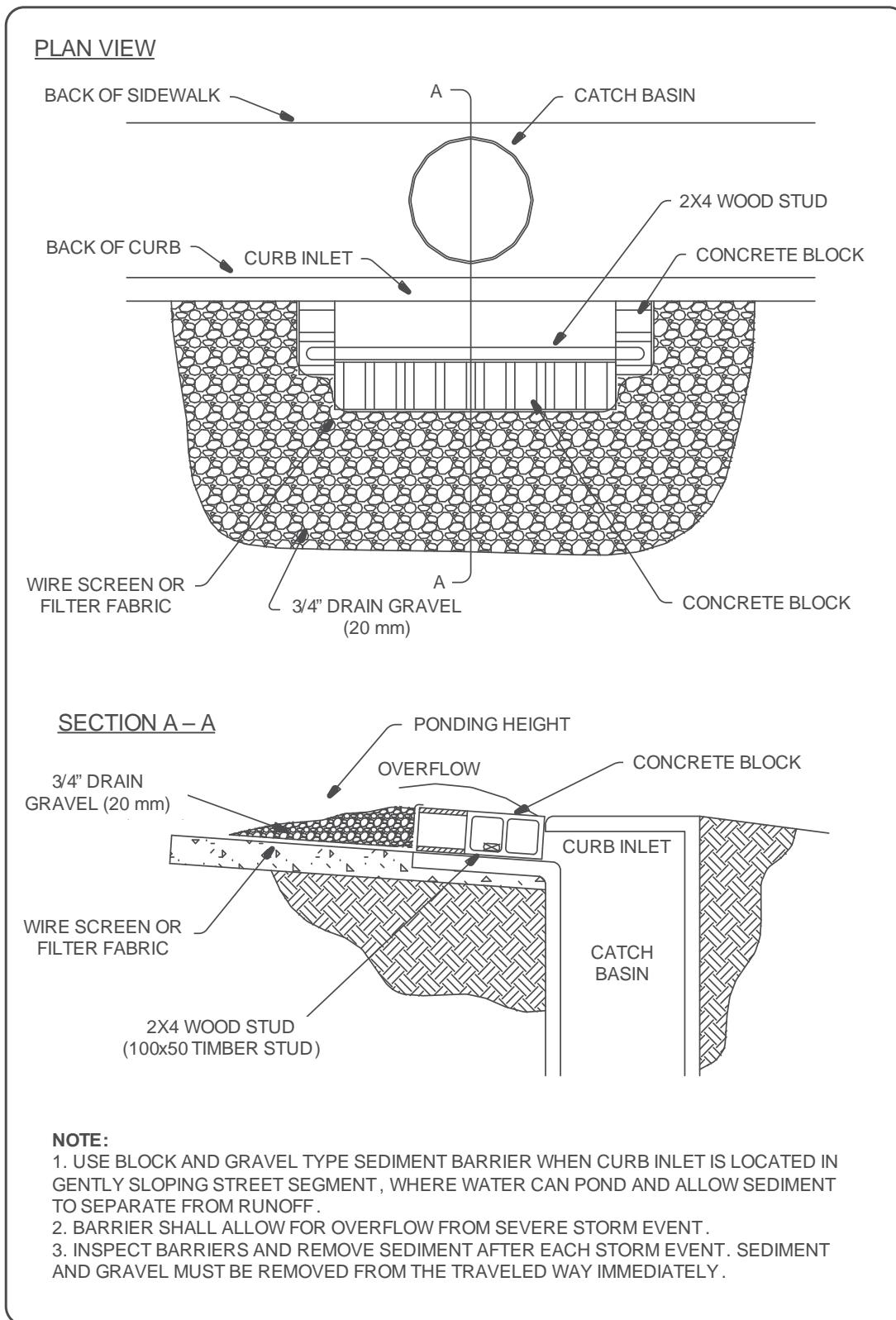
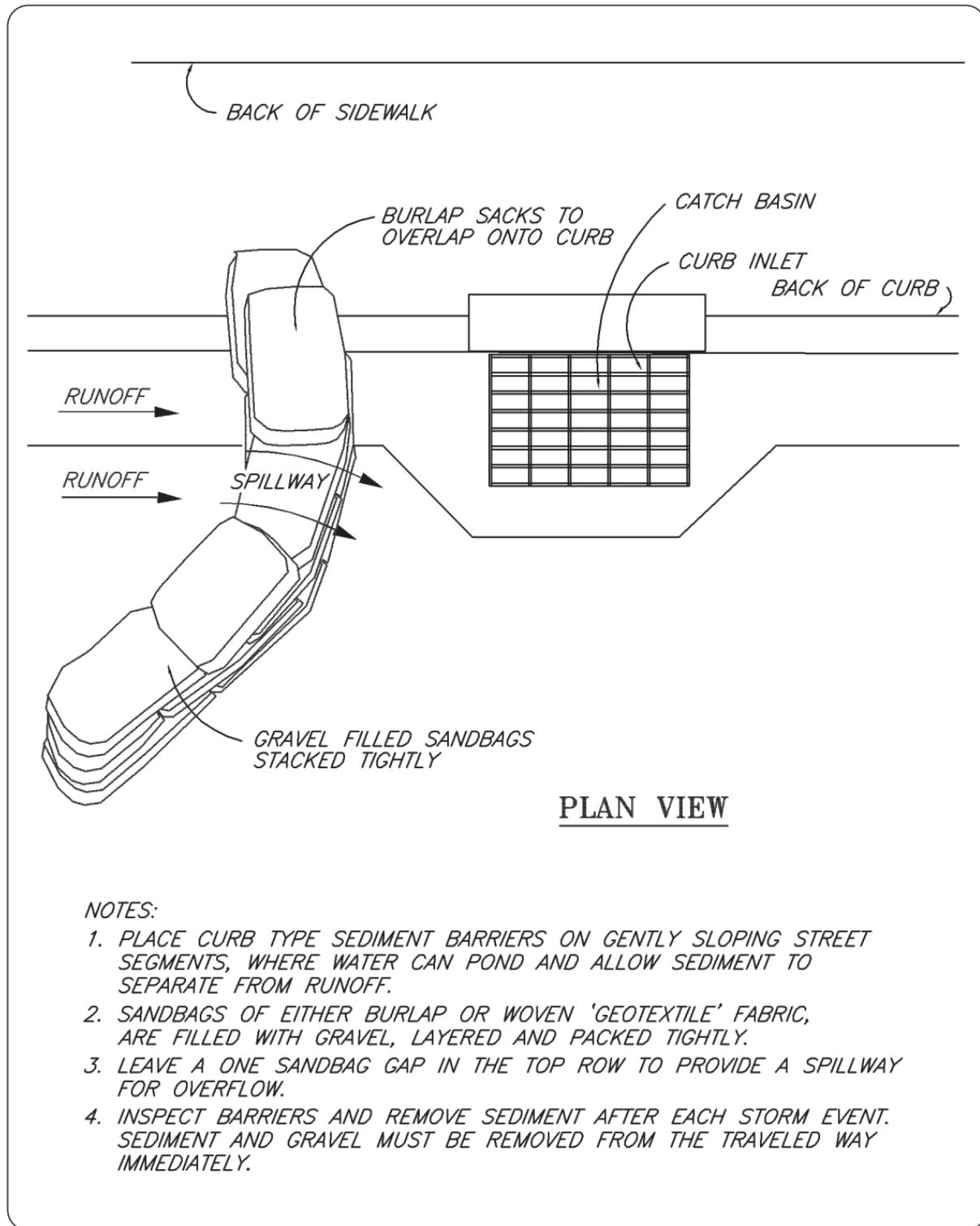



Figure 2 - 26. Straw Wattles

Figure 2 - 21. Block and Gravel Curb Inlet Protection


Curb and Gutter Sediment Barrier

Sandbag or rock berm (riprap and aggregate) 3 feet high and 3 feet wide in a horseshoe shape. See Figure 2 - 22.

- Construct a horseshoe shaped berm, faced with coarse aggregate if using riprap, 3 feet high and 3 feet wide, at least 2 feet from the inlet.
- Construct a horseshoe shaped sedimentation trap on the outside of the berm sized to sediment trap standards for protecting a culvert inlet.
- Sandbag must be gravel filled.

3.2.11.4 Maintenance Standards

- Inspect catch basin filters frequently, especially after storm events. If the insert becomes clogged, clean or replace it.
- For systems using stone filters: If the stone filter becomes clogged with sediment, the stones must be pulled away from the inlet and cleaned or replaced. Since cleaning of gravel at a construction site may be difficult, an alternative approach would be to use the clogged stone as fill and put fresh stone around the inlet.
- Do not wash sediment into storm drains while cleaning. Spread all excavated material evenly over the surrounding land area or stockpile and stabilize as appropriate.
- Do not allow accumulated sediment to enter the storm drain system.
- Inlet protection shall be removed when area is fully stabilized and erosion and sediment controls are no longer needed.

Figure 2 - 22. Curb and Gutter Sediment Barrier

3.2.16 BMP C235: Wattles

3.2.16.1 Purpose

Wattles are temporary erosion and sediment control barriers consisting of straw, compost or other material that is wrapped in biodegradable tubular plastic or similar encasing material. They

reduce the velocity and can spread the flow of rill and sheet runoff, and can capture and retain sediment. Wattles are typically 8 to 10 inches in diameter and 25 to 30 feet in length. The wattles are placed in shallow trenches and staked along the contour of disturbed or newly constructed slopes. See Figure 2 - 26 for typical construction details.

3.2.16.2 Conditions of Use

- Use wattles
 - In disturbed areas that require immediate erosion protection.
 - On exposed soils during the period of short construction delays.
 - On slopes requiring stabilization until permanent vegetation can be established.
- Wattles are typically effective for one to two seasons.
- If conditions are appropriate, wattles can be staked to the ground using live cuttings for added revegetation.

3.2.16.3 Design Criteria

- It is critical that wattles are installed perpendicular to the flow direction and parallel to the slope contour.
- Dig narrow trenches across the slope on contour to a depth of 3 to 5 inches on clay soils and soils with gradual slopes. On loose soils, steep slopes, and areas with high rainfall, dig the trenches to a depth of 5 to 7 inches, or 1/2 to 2/3 of the thickness of the wattle.
- Start building trenches and installing wattles from the base of the slope and work up. Excavated material should be spread evenly along the uphill slope and compacted using hand tamping or other methods.
- Construct trenches at contour intervals of 3 to 30 feet apart depending on the steepness of the slope, soil type, and rainfall. The steeper the slope, the closer together the trenches shall be.
- Install the wattles snugly into the trenches and abut tightly end to end. Do not overlap the ends. Rilling can occur beneath wattles if not properly entrenched, and water can pass between wattles if not tightly abutted.
- Install stakes at each end of the wattle, and at 4-foot centers along entire length of wattle.
- If required, install pilot holes for the stakes using a straight bar to drive holes through the wattle and into the soil.
- At a minimum, wooden stakes should be approximately 3/4 x 3/4 x 24 inches, minimum. Live cuttings or 3/8-inch rebar can also be used for stakes.
- Stakes should be driven through the middle of the wattle, leaving 2 to 3 inches of the stake protruding above the wattle.
- Compost wattles shall comply with BMP C125: Compost.

3.2.16.4 Maintenance Standards

- Wattles may require maintenance to ensure they are in contact with soil and thoroughly entrenched, especially after significant rainfall on steep sandy soils.
- Inspect the slope after significant storms and repair any areas where wattles are not tightly abutted or water has scoured beneath the wattles.

C. Site Inspection Form

Construction Stormwater Site Inspection Form

Project Name _____ Permit # _____ Inspection Date _____ Time _____

Name of Certified Erosion Sediment Control Lead (CESCL) or qualified inspector if *less than one acre*

Print Name: _____

Approximate rainfall amount since the last inspection (in inches): _____

Approximate rainfall amount in the last 24 hours (in inches): _____

Current Weather Clear Cloudy Mist Rain Wind Fog

A. Type of inspection: Weekly Post Storm Event Other

B. Phase of Active Construction (check all that apply):

Pre Construction/installation of erosion/sediment controls

Clearing/Demo/Grading

Infrastructure/storm/roads

Concrete pours

Vertical Construction/buildings

Utilities

Offsite improvements

Site temporary stabilized

Final stabilization

C. Questions:

1. Were all areas of construction and discharge points inspected? Yes _____ No _____
2. Did you observe the presence of suspended sediment, turbidity, discoloration, or oil sheen Yes _____ No _____
3. Was a water quality sample taken during inspection? (refer to permit conditions S4 & S5) Yes _____ No _____
4. Was there a turbid discharge 250 NTU or greater, or Transparency 6 cm or less?* Yes _____ No _____
5. If yes to #4 was it reported to Ecology? Yes _____ No _____
6. Is pH sampling required? pH range required is 6.5 to 8.5. Yes _____ No _____

If answering yes to a discharge, describe the event. Include when, where, and why it happened; what action was taken, and when.

*If answering yes to # 4 record NTU/Transparency with continual sampling daily until turbidity is 25 NTU or less/ transparency is 33 cm or greater.

Sampling Results: _____ Date: _____

Parameter	Method (circle one)	Result			Other/Note
		NTU	cm	pH	
Turbidity	tube, meter, laboratory				
pH	Paper, kit, meter				

Construction Stormwater Site Inspection Form

D. Check the observed status of all items. Provide "Action Required" details and dates.

Element #	Inspection	BMPs Inspected			BMP needs maintenance	BMP failed	Action required (describe in section F)
		yes	no	n/a			
1 Clearing Limits	Before beginning land disturbing activities are all clearing limits, natural resource areas (streams, wetlands, buffers, trees) protected with barriers or similar BMPs? (high visibility recommended)						
2 Construction Access	Construction access is stabilized with quarry spalls or equivalent BMP to prevent sediment from being tracked onto roads?						
	Sediment tracked onto the road way was cleaned thoroughly at the end of the day or more frequent as necessary.						
3 Control Flow Rates	Are flow control measures installed to control stormwater volumes and velocity during construction and do they protect downstream properties and waterways from erosion?						
	If permanent infiltration ponds are used for flow control during construction, are they protected from siltation?						
4 Sediment Controls	All perimeter sediment controls (e.g. silt fence, wattles, compost socks, berms, etc.) installed, and maintained in accordance with the Stormwater Pollution Prevention Plan (SWPPP).						
	Sediment control BMPs (sediment ponds, traps, filters etc.) have been constructed and functional as the first step of grading.						
	Stormwater runoff from disturbed areas is directed to sediment removal BMP.						
5 Stabilize Soils	Have exposed un-worked soils been stabilized with effective BMP to prevent erosion and sediment deposition?						

Construction Stormwater Site Inspection Form

Element #	Inspection	BMPs Inspected			BMP needs maintenance	BMP failed	Action required (describe in section F)
		yes	no	n/a			
5 Stabilize Soils Cont.	Are stockpiles stabilized from erosion, protected with sediment trapping measures and located away from drain inlet, waterways, and drainage channels?						
	Have soils been stabilized at the end of the shift, before a holiday or weekend if needed based on the weather forecast?						
6 Protect Slopes	Has stormwater and ground water been diverted away from slopes and disturbed areas with interceptor dikes, pipes and or swales?						
	Is off-site storm water managed separately from stormwater generated on the site?						
	Is excavated material placed on uphill side of trenches consistent with safety and space considerations?						
	Have check dams been placed at regular intervals within constructed channels that are cut down a slope?						
7 Drain Inlets	Storm drain inlets made operable during construction are protected.						
	Are existing storm drains within the influence of the project protected?						
8 Stabilize Channel and Outlets	Have all on-site conveyance channels been designed, constructed and stabilized to prevent erosion from expected peak flows?						
	Is stabilization, including armoring material, adequate to prevent erosion of outlets, adjacent stream banks, slopes and downstream conveyance systems?						
9 Control Pollutants	Are waste materials and demolition debris handled and disposed of to prevent contamination of stormwater?						
	Has cover been provided for all chemicals, liquid products, petroleum products, and other material?						
	Has secondary containment been provided capable of containing 110% of the volume?						
	Were contaminated surfaces cleaned immediately after a spill incident?						
	Were BMPs used to prevent contamination of stormwater by a pH modifying sources?						

Construction Stormwater Site Inspection Form

Element #	Inspection	BMPs Inspected			BMP needs maintenance	BMP failed	Action required (describe in section F)
		yes	no	n/a			
9 Cont.	Wheel wash wastewater is handled and disposed of properly.						
10 Control Dewatering	Concrete washout in designated areas. No washout or excess concrete on the ground.						
	Dewatering has been done to an approved source and in compliance with the SWPPP.						
	Were there any clean non turbid dewatering discharges?						
11 Maintain BMP	Are all temporary and permanent erosion and sediment control BMPs maintained to perform as intended?						
12 Manage the Project	Has the project been phased to the maximum degree practicable?						
	Has regular inspection, monitoring and maintenance been performed as required by the permit?						
	Has the SWPPP been updated, implemented and records maintained?						
13 Protect LID	Is all Bioretention and Rain Garden Facilities protected from sedimentation with appropriate BMPs?						
	Is the Bioretention and Rain Garden protected against over compaction of construction equipment and foot traffic to retain its infiltration capabilities?						
	Permeable pavements are clean and free of sediment and sediment laden-water runoff. Muddy construction equipment has not been on the base material or pavement.						
	Have soiled permeable pavements been cleaned of sediments and pass infiltration test as required by stormwater manual methodology?						
	Heavy equipment has been kept off existing soils under LID facilities to retain infiltration rate.						

E. Check all areas that have been inspected. ✓

All in place BMPs All disturbed soils All concrete wash out area All material storage areas
 All discharge locations All equipment storage areas All construction entrances/exits

Construction Stormwater Site Inspection Form

F. Elements checked "Action Required" (section D) describe corrective action to be taken. List the element number; be specific on location and work needed. Document, initial, and date when the corrective action has been completed and inspected.

Element #	Description and Location	Action Required	Completion Date	Initials

Attach additional page if needed

Sign the following certification:

"I certify that this report is true, accurate, and complete, to the best of my knowledge and belief"

Inspected by: (print) _____ (Signature) _____ Date: _____
Title/Qualification of Inspector: _____

D. Construction Stormwater General Permit (CSWGP)