NutraHacker

Imputed Lactation Report for Customer: 55ffb33f-2a2f-45d3-88b1-a0d59bf766b6

Disclaimer: This report is offered by Nutrahacker, LLC. It is not intended to diagnose, treat, or prevent any disease. It is for informative and educational purposes only. Please follow the advice of your healthcare provider.

Copyright 2022, All Rights Reserved, NutraHacker, LLC

This is a genetic report that identifies single nucleotide polymorphisms (SNP) that have an influence on lactation or the breastfed infant. These genes relate to the mother and do not analyze genetics of the child.

SNPs starred with an asterisk (*) have been calculated using impute software.

Imputed alleles are phased, meaning it can be discerned which gene copy caries a particular allele. Phasing separates maternally and paternally inherited copies of alleles so that haplotypes can be determined.

Conventionally, major/minor allele is selected as the predominant allele versus less common allele in a particular population, and this can vary depending on the population assessed.

In this report, the majority of "expected" alleles come from the major allele and variant is minor allele, however in certain circumstances it was found that the minor allele provides a benefit and is selected as expected or "beneficial" allele. We refer to these as "expected" and "variant" allele.

This report is provided for informational purposes, speak with your doctor if you would like further understanding or guidance. This report should not be used to make any changes to diet or breastfeeding without consulting under the care of a licensed physician or nutritionist.

Helpful excerpts from various publications:

Secretor: The activity of alpha-[1,2]-fucosyltransferase, encoded by the FUT2 gene, determines "secretor" versus "nonsecretor" status and HBGA expression. Secretors can express 2-fucosylated oligosaccharides in breast milk and H-type 1 antigens on mucosal surfaces. Homozygotes for inactivating alleles in FUT2 are characterized as nonsecretors and lack this ability but seem to be protected against symptomatic RV infections.

Maternal Secretor Status Affects Oral Rotavirus Vaccine Response in Breastfed Infants in Bangladesh https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8561252/ Fucosylated oligosaccharides are decoy receptors for many pathogenic bacteria, including members of enterobacteria; hence, they have a potential to reduce their adhesion to the gut, thus protecting the infant. In addition, fucosylated HMOs bind enterotoxin produced by E. coli.

Fucosylated oligosaccharides in mother's milk alleviate the effects of caesarean birth on infant gut microbiota - https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6137148/

What are the benefits of human milk oligosaccharides?

Several studies have reported the health benefits of HMOs, which include modulation of the intestinal microbiota, anti-adhesive effect against pathogens, modulation of the intestinal epithelial cell response, and development of the immune system.

The Role of Two Human Milk Oligosaccharides, 2'-Fucosyllactose and Lacto-N-Neotetraose, in Infant Nutrition https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6629589/

The results indicate that maternal secretor status may be particularly influential in infants with compromised microbiota development, and that these infants could benefit from corrective supplementation.

The combination of caesarean birth and lack of milk 2'FL appear to profoundly alter the infant's microbiota. The FUT3 enzyme determines the Lewis type (Le), resulting in strong reduction of alpha-1,3 and absence of alpha-1,4 fucosylated HMOs in milk. Lewis and Secretor type thus allow grouping of human milk in four main milk groups, also sometimes named 'lactotypes'.

Biology of human milk oligosaccharides: From basic science to clinical evidence - https://onlinelibrary.wiley.com/doi/full/10.1111/jhn.12990

The importance of functional Se and Le genes in infant development is an area of active research. One study showed that maternal secretor status appeared to be important for preventing diarrhea, as although the gut microbiota measured through 16S rRNA sequencing did not differ between infants of Se+ and Se- mothers, the prevalence of diarrhea was higher among infants of Se- mothers (18). Moreover, when these infants were provided iron supplements, infants of Se- mothers were more likely to experience a decrease in the abundance of Bifidobacterium and an increase in pathogens compared to infants of Se+ mothers (18). However, supplementation with galactooligosaccharides appeared to ameliorate the impact of iron supplementation (18).

In terms of the oligosaccharides and their metabolites, 3'galactosyllactose, 3'SL, fucose, and LNnT were between 2- and 10-fold lower in milk samples from Se-Le- and Se-Le+ compared to Se+ mothers. Galactose was 6 and 1 times higher in milk samples from Se-Le- and Se-Le+ mothers, respectively, compared to samples from Se+ mothers. For metabolites associated with energy metabolism, samples from Se-Le- milk were approximately 4 times higher in creatine phosphate, 12 times higher in creatine, 4 times higher in creatinine, 5 times higher in citrate, 6 times higher in pyruvate, and 10 times higher in succinate compared to Se+ milk, while these metabolites were similar in concentration between milk from Se-Le+ and Se+ mothers. The Milk Metabolome of Non-secretor and Lewis Negative Mothers - https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7901958/

Helpful reading:

Genetic and Physiological Factors Affecting Human Milk Production and Composition - https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7284811/ Review of Infant Feeding: Key Features of Breast Milk and Infant Formula - https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4882692/ Human milk oligosaccharides: Every baby needs a sugar mama - https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3406618/ The Milk Metabolome of Non-secretor and Lewis Negative Mothers - https://www.frontiersin.org/articles/10.3389/fnut.2020.576966/full Human Milk Oligosaccharides and Lewis Blood Group: Individual High-Throughput Sample Profiling to Enhance Conclusions From Functional Studies https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3649481/ The Impact of Dietary Fucosylated Oligosaccharides and Glycoproteins of Human Milk on Infant Well-Being https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7230487/ Influence of Gestational Age, Secretor, and Lewis Blood Group Status on the Oligosaccharide Content of Human Milk https://pubmed.ncbi.nlm.nih.gov/27602704/

Innate protection conferred by fucosylated oligosaccharides of human milk against diarrhea in breastfed infants -

https://academic.oup.com/glycob/article/14/3/253/642175

The Impact of Dietary Fucosylated Oligosaccharides and Glycoproteins of Human Milk on Infant Well-Being https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7230487/

Total number of expected homozygous mutations: 30 Total number of variant homozygous mutations: 8 Total number of heterozygous mutations: 11 Total number of SNPs imputed: 40

Gender of customer: Male

RSID	Gene	Variant	Expected	Variant Allele	Your Genotype		
rs602662*		G258S	G	А	GG: 2/2		
missense variant G739A (rs602	missense variant G739A (rs602662) and were designated as nonsecretors						
https://pubmed.ncbi.nlm.nih.gov/31763671/							

RSID	Gene	Variant	Expected	Variant Allele	Your Genotype		
rs199854112	ABCG2	T421A		A	N/A		
Mothers harboring the c.421C :	Mothers harboring the c.421C > A polymorphism in ABCG2, secreted threefold more nifedipine to human milk						
https://pubmed.ncbi.nlm.nih.go	v/30659932/						

	RSID	Gen	ne	Varian	it	Expe	cted	Va	riant Allele	Your Genoty	/pe
	rs3733890*	внмт		Arg239GIn		G		A		GG: 2/ 2	
	When evaluated independently	, the BHMT <mark>varia</mark> r	int allele was as	sociated with non-	significantly d	lecreased tu	<mark>rnover</mark> of ch	nolin <mark>e to</mark>	betaine, and inc	creased turnover of cl	no <mark>line to</mark>
	CDP-PC as well as a (non-sign	ificantly, p = 0.07)	7) lower betaine-	d9/PC-d9 enrichm	ent ratio. Tog	jether, t <mark>hese</mark>	r <mark>esult</mark> s indi	cate tha	<mark>it t</mark> he variant fav	ors th <mark>e use</mark> of diet <mark>ary</mark>	choline for
	CDP-PC synthesis at the expen	nse of be <mark>taine s</mark> yr	nthe <mark>sis.</mark>								
	https://pubmed.ncbi.nlm.nih.go	v/28134 <mark>761/</mark>									
	RSID	Gen	ne	Varian	it	Expe	cted	Va	riant Allele	Your Genoty	/pe
	rs12676*	СНОН				CC		A		CC: 2/2	
	altered the use of choline as a	m <mark>ethyl d</mark> onor, alte	ered the dis <mark>tribu</mark>	ition of dietary cho	line be <mark>tween</mark>	the CDP-cho	ol <mark>ine a</mark> nd ph	iosphati	dy <mark>lethanolamine</mark>	N-methyltransferase	(PEMT)
	denovo pathway.										
[https://pubmed.ncbi.nlm.nih.go	v/28134761/									

RSID	Gene	Variant	Expected	Variant Allele	Your Genotype		
rs9001*	CHDH		TT	G	TT: 2/2		
The rs9001 variant may relatively favor CDP-PC synthesis over PEMT-PC synthesis. This relatively greater use of choline for CDP-PC synthesis as compared to PEMT							
synthesis among CHDH rs900 ⁻	synthesis among CHDH rs9001 variants may conserve choline stores.						
https://pubmed.ncbi.nlm.nih.go	https://pubmed.ncbi.nlm.nih.gov/28134761/						

RSID	Gene	Variant	Expected	Variant Allele	Your Genotype		
rs10791957	СНКА		CC	A	CA: 1/2		
altered the use of choline as a methyl donor, altered the distribution of dietary choline between the CDP-choline and phosphatidylethanolamine N-methyltransferase (PEMT)							
denovo pathway.	denovo pathway.						
https://pubmed.ncbi.nlm.nih.go	https://pubmed.ncbi.nlm.nih.gov/28134761/						

RSID	Gene	Variant	Expected	Variant Allele	Your Genotype		
rs3798719*	ELOVL2		Т	С	CT: 1/2		
Regarding elongases rs953413	Regarding elongases rs953413-A and rs3798719-T in ELOVL2 gene were associated with higher EPA levels.						
https://www.ncbi.nlm.nih.gov/pi	mc/articles/PMC3044172/						

RSID	Gene	Varia nt	Expected	Variant Allele	Your Genotype
rs953413*	ELOVL2		A	G	GA: 1/2
Regarding elongases rs953413	3-A and rs3798719-T in ELOVL2	gene wer <mark>e ass</mark> ociated with high	er EPA levels.		
nttps://www.ncbi.nlm.nih.gov/pr	mc/articles/PMC3044172/				
RSID	Gene	Variant	Expected	Variant Allele	Your Genotype
rs12207094*	ELOVL5		T	A	AA: 2/2
Regarding the ELOVL <mark>5 gen</mark> e, w	we found that children of mothers	s carrying <mark>the rs</mark> 175441 <mark>59-C</mark> alle	le (associated with high	er E <mark>PA/A</mark> A ratio in colos	strums) or carrying the
rs12207094-T allele (associated	d with both higher EPA/AA and I	DHA/AA ratios in colostrum) had	higher cognition scores	rela <mark>ted to</mark> children of m	others homozygo <mark>te for</mark> the
major allele.					
https://www.ncbi.nlm.nih.gov/pr	mc/articles/PMC3044172/				

RSID	Gene	Variant	Expected	Variant Allele	Your Genotype		
rs17544159*	ELOVL5		С	A	AA: 2/2		
Regarding the ELOVL5 gene, we found that children of mothers carrying the rs17544159-C allele (associated with higher EPA/AA ratio in colostrums) or carrying the							
rs12207094-T allele (associate	ed with both higher EPA/AA and	DHA/AA ratios in colostrum) had	higher cognition scores	s related to children of m	others homozygote for the		
major allele.	major allele.						
https://www.ncbi.nlm.nih.gov/p	https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3044172/						

RSID	Gene	Variant	Expected	Variant Allele	Your Genotype	
rs2397142*	ELOVL5		С	Т	GC: 1/2	
Not being breastfed resulted in a disadvantage in cognition (5 to 8 points) among children CC homozygote for rs23971 42 (low ELOVL5 activity), but not among those carrying						
the G allele. In ELOVL5, the	rs2397142-C allele was nominally	associated with lower capacity t	to metabolize EPA to DF	A. Among children CC I	homozygotes for rs2397142	
(low ELOVL5 index), exposu	re to high levels of EPA, and high	EPA/AA and DHA/AA ratios wer	e associated with a 6.7-	, 8.6- and 10.1-points ac	vantage in scores, respectively,	
relative to children exposed to low levels						
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3044172/						

RSID	Gene	Variant	Expected	Variant Allele	Your Genotype		
rs174464*	FADS1		G	A	GG: 2/2		
Related to lower levels of AA (Table S2). The rs174602-G, and	174464-T in the FADS cluster v	vere associated with low	er levels of DHA.			
https://www.ncbi.nlm.nih.gov/p	mc/articles/PMC3044172/						
RSID	Gene	Variant	Expected	Variant Allele	Your Genotype		
rs174468*	FADS1		A	G	AG: 1/2		
Not being breastfed conferred	an 8- to 9-point disadvantage in	cognition among children GG ho	mozygote for rs174468	(low FADS1 activity) bu	t not among those with the A		
allele.							
https://www.ncbi.nlm.nih.gov/p	mc/articles/PMC3044172/						
RSID	Gene	Variant	Expected	Variant Allele	Your Genotype		
rs174553*	FADS1		A	G	AA: 2/2		
The minor allele homozygotes	of rs174553 (GG), rs99780 (TT),	and rs174583 (TT) were assoc	iated with significantly lo	wer 14:0, arachidonic (ARA, 20:4) and		
eicosapentanoic acid (EPA, 20):5), but higher 20:2 (omega 6) fa	tty acid in human milk [66]. Mot	hers carrying the minor	homozygous allele G/G	of rs174575, showed lower		
ARA, EPA, and docosahexand	pic acids (DHA, 22:6 (omega 3)) a	and 22:5 (omega 3) levels in hu	man milk [66]. Mothers o	arrying FADS1 rs17456	1, FADS2 rs174575, and		
ntergenic rs3834458 minor all	eles were found to have lower pr	oportions of DHA in human milk	. Mothers carrying gene	tic variants associated v	vith lower FADS1 activity		
regulating AA and EPA synthe	esis), higher FADS2 activity (regu	ulating DHA synthesis), and with	higher EPA/AA and DH	IA/AA ratios in colostrun	n showed a significant		
advantage in cognition at 14 m	onths.						

https://academic.oup.com/jn/article/138/11/2222/4670097?login=false

RSID	Gene	Variant	Expected	Variant Allele	Your Genotype			
rs174556*	FADS1		С	т	CC: 2/2			
Together with a recently publis	Together with a recently published study that found that mothers carrying the minor allele of FADS1 rs174556 had lower proportions of ARA [108]							
https://www.ncbi.nlm.nih.gov/pi	https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7284811/							

RSID	Gene	Variant	Expected	Variant Allele	Your Genotype		
rs174561*	FADS1		Т	С	TT: 2/2		
DHA proportions in milk increased	DHA proportions in milk increased only with fish and fish-oil intake in the major-allele carriers.						
https://pubmed.ncbi.nlm.nih.go	v/20335541/						

RSID	Gene	Variant	Expected	Variant Allele	Your Genotype	
rs99780*	FADS1		С	Т	CC: 2/2	
The minor allele homozygotes of	of rs174553 <mark>(GG), rs997</mark> 80 (TT)), and rs17 <mark>4583 (TT)</mark> were asso	ciated with significantly lo	ower <mark>14:0,</mark> arachidonic (A	ARA, 20:4) and	
eicosapentanoic acid (EPA, 20	:5), but higher 20:2 (omega 6) f	atty acid in <mark>human milk</mark> [66]. Mo	thers carrying the minor	hom <mark>ozygo</mark> us allele G/G	of rs1 <mark>74575</mark> , showed lower	
ARA, EPA, and docosahexanoi	ic acids (DHA, 22:6 (omega 3))	and 22:5 (<mark>omeg</mark> a 3) levels in hu	iman m <mark>ilk [66]. Moth</mark> ers o	carryi <mark>ng FA</mark> DS1 rs17456	1, FADS2 rs174575, and	
intergenic rs3834458 minor alle	eles were found to have lower p	roportions <mark>of DH</mark> A in <mark>hum</mark> an mill	۲.			
https://academic.oup.com/jn/art	ticle/13 <mark>8/11/</mark> 2222/46700 <mark>97?log</mark> i	n=false				
RSID	Gene	Variant	Expected	Variant Allele	Your Genotype	
rs1535*	FADS2		A	G	AA: 2/2	
GG homozygotes of rs1535 are	e disadvantageous for tissue DF	HA [15,17,2 <mark>4], m</mark> eaning the G al	l <mark>ele</mark> (major alle <mark>le in t</mark> his s	tudy, but minor in others	b) tended to decrease milk DHA	
proportions. Homozygous carrie	ers of the minor allele of rs1535	had a DHA increase of 1.8 FA	% (P = 0.001) relative to	those with the wild-type	allele, whereas minor allele	
carriers of rs174448 and rs174575 had a decrease of 1.1 FA% (P = 0.005) and 2.0 FA% (P = 0.001), respectively. Each 10-g increment in fish intake was associated with an						
increased DHA status of 0.3 FA	A%. At 3 y, fish intake was the c	only significant determinant of D	HA status (0.2 FA%/10 g).		
https://pubmed.ncbi.nlm.nih.gov	v/32093185/					

https://pubmed.ncbi.nlm.nih.gov/23636240/

RSID	Gene	Variant	Expected	Variant Allele	Your Genotype		
rs174448*	FADS2		A	G	AA: 2/2		
Based on multiple linear regression of data from 164 mothers that completed this study, there was 0.28% (FA%) reduction in milk DHA in high versus low genetic risk							
(stratified by whether minor alle	ele numbers were greater than o	r equal to 3 in rs1535 and rs174	448) and 0.45% reduction	on in low versus high inta	ake (stratified by whether DHA		
intake reached 200 mg/d).							
https://pubmed.ncbi.nlm.nih.gov/32093185/							
https://pubmed.ncbi.nlm.nih.go	https://pubmed.ncbi.nlm.nih.gov/23636240/						

	RSID	Gene	Variant	Expected	Variant Allele	Your Genotype
r	s174575*	FADS2		С	G	CC: 2/2
	OHA proportions in milk increas	ed only with fish and fish-oil int	ake in the major-allele carriers.	•	•	
r	https://pubmed.ncbi.nlm.nih.gov	/20335541/				
ł	https://www.pnas.org/doi/full/10	.1073/pnas.0 <mark>70429210</mark> 4				
ł	https://academic.oup.com/ajcn/	article/97/6 <mark>/1403/457692</mark> 7				
	RSID	Gene	Variant	Expected	Variant Allele	Your Genotype
r	s174583*	FADS2		C	Т	CC: 2/2
Ī	The minor allele homozygotes o	of rs174553 (GG), rs99780 (TT)	, and rs17 <mark>4583</mark> (TT) were assoc	iated with significantly Ic	wer <mark>14:0,</mark> arachidonic (A	ARA, 20:4) and
e	eicosapentanoic acid (<mark>EPA,</mark> 20:	5), but higher 20:2 (omega 6) fa	atty acid in <mark>hum</mark> an milk [66]. Mot	h <mark>ers c</mark> arrying <mark>the m</mark> inor I	nom <mark>ozygo</mark> us allele G/G (of rs174575, show <mark>ed lo</mark> wer
4	NRA, EPA, and docosahexanoi	c <mark>acids (</mark> DHA, 22:6 (omega <mark>3))</mark>	and 22:5 (omeg <mark>a 3) levels in hu</mark> i	<mark>man</mark> milk [66]. Mothers c	arryi <mark>ng FA</mark> DS1 rs17456	1, FADS2 rs1745 <mark>75, an</mark> d
i	ntergenic rs3834458 minor alle	l <mark>es we</mark> re found to have lower pr	roportions of DHA in human milk			
ľ	https://academic.oup.com/jn/art	icle/138/11/2222/4670097?logi	n=false			

RSID	Gene	Variant	Expected	Variant Allele	Your Genotype			
rs174602*	FADS2 T C T		TT: 2/2					
Moreover, the rs174602-G allel	Moreover, the rs174602-G allele was associated with lower FADS2 index (capacity to synthesize DHA from EPA).							
https://www.ncbi.nlm.nih.gov/pi	mc/articles/PMC3044172/							

RSID	Gene Variant Expected		Expected	Variant Allele	Your Genotype			
rs174627*	FADS2		т	G	GG: 2/2			
Children of mothers carrying at	least one copy of the minor alle	le (T) for this variant had higher	cognition scores compa	red to children of mothe	rs homozygotes for the major			
allele	allele							
https://www.ncbi.nlm.nih.gov/p	https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3044172/							

RSID	Gene	Variant	Expected	Variant Allele	Your Genotype			
rs1000778	FADS3		G	A	GG: 2/2			
Pairwise comparison showed t	hat individuals major homozyg	ous for the SNP rs1000778 in the	FADS3 gene had lower	concentrations of ALA	and linoleic acid (LA) in their			
breast milk.								
https://www.sciencedirect.com/	https://www.sciencedirect.com/science/article/abs/pii/S095232781530034X							
RSID	Gene	Variant	Expected	Variant Allele	Your Genotype			
rs2266782	FMO3	Glu158Lys	G	A	GA: 1/2			
Converts TMA to TMAO, increa	ased trimethylaminuria							
https://pubmed.ncbi.nlm.nih.go	ov/28134 <mark>761/</mark>							
RSID	Gene	Variant	Expected	Variant Allele	Your Genotype			
rs9939609	FTO		Т	A	TA: 1/2			
Rs9939609 AA individuals were more susceptible than AT and TT individuals to both short and long breastfeeding durations, which is consistent with the differential susceptibility hypothesis.								
							https://pubmed.ncbi.nlm.nih.gov/35127123/	

RSID	Gene	Variant	Expected	Variant Allele	Your Genotype	
rs1047781*	FUT2	A385T	А	Т	AA: 2/2	
Missense mutation, non-secret	or	-		-		
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6306508/						

RSID	Gene	Variant	Expected	Variant Allele	Your Genotype			
rs200157007*	FUT2		С	т	CC: 2/2			
One novel missense FUT2 SNI	One novel missense FUT2 SNP, rs200157007-TT and the earlier established rs601338-AA SNP were shown to be causing non-secretor status, with these SNPs being							
associated with symptomatic but not asymptomatic ETEC infection.								
https://www.nature.com/articles	s/s41598-017-10854-5							

RSID	Gene		Variant		Exp	pected	Varia	ant Allele	Your Ge	notype
rs492602*	FUT2				G		А		AA: 2/2	
Women homozygous for the rs492602[G] allele had higher B(12) levels. This allele is in strong linkage disequilibrium with the FUT2 nonsecretor variant encoding W143X,										
suggesting a plausible mechanism for altered B(12) absorption and plasma levels.										
https://pubmed.ncbi.nlm.nih.go	v/18776911/									
https://pubmed.ncbi.nlm.nih.go	v/23402911/									
RSID	Gene		Variant		Exp	be c ted	Varia	ant Allele	Your Ge	notype
rs601338*	FUT2	W1	43X		G		А		GG: <mark>2/2</mark>	
Individuals with a secretor phere	notype were either hom	<mark>ozygo</mark> us (GG) or h <mark>eteroz</mark> ygo	us (<mark>G</mark> A) at th	e po <mark>sitio</mark> n.	. N <mark>onsen</mark> se n	nutati <mark>on W</mark>	143X that intr	oduces a premati	u <mark>re sto</mark> p codon
in the FUT2 gene (rs601338) a	bolish <mark>ed the</mark> ability to s	y <mark>nthes</mark> ize alpl	ha (1- <mark>2)-fuc</mark> osyl	a <mark>ted H</mark> MOs	(no <mark>n-sec</mark> re	tor <mark>statu</mark> s). N	on-s <mark>ecret</mark> o	ors where four	nd to express less	s <mark>HMO</mark> s
compared to mothers with secr	etor status (active FUT	2) [67,68,69,7	70]. In <mark>addit</mark> ion,	m <mark>atern</mark> al see	er <mark>etor s</mark> tatu	ıs <mark>was s</mark> howr	n to b <mark>e ass</mark>	ociated with th	he human milk mi	crobiota
composition [71]. Infants fed by	/ non-secretor mothers.	were delayed	d in th <mark>e est</mark> ablis	hm <mark>ent of</mark> the	i <mark>r gut</mark> micro	obi <mark>ota, s</mark> pecit	ically bifid	obacterial-lad	en (G- secretor, A	۸-
non-secretor). FUT2 SNP rs60	13 <mark>38 wa</mark> s found to prec	lominantly def	fine th <mark>e Sec</mark> reto	r stat <mark>us S</mark> e-:	11.8% an	d it <mark>was</mark> highl	y cor <mark>relate</mark>	ed with 2'-fuco	syllactose (2'FL,	p < 0.001) and
lacto-N-fucosylpentaose-I (LNFP-I, p < 0.001). Individuals with the wild type G/G genotype have high concentrations of 2'FL in their milk. All cases with vitamin B12 deficit										
carried the FUT2 rs601338 sed	retor variant.									
https://pubmed.ncbi.nlm.nih.go	v/33195368/									

RSID	Gene	Variant	Expected	Variant Allele	Your Genotype
rs28362459*	159* FUT3 T59G A A		AA: 2/2		
Milk samples derived from mot	hers with inactive FUT3 due to g	enetic variations are referred to	as Lewis negative, as o	oposed to Lewis positive	e when FUT3 is active
https://pubmed.ncbi.nlm.nih.go	v/33195368/				

RSID	Gene	Variant	Expected	Variant Allele	Your Genotype		
rs3745635*	FUT3	G508A	С	Т			
Milk samples derived from mot	Milk samples derived from mothers with inactive FUT3 due to genetic variations are referred to as Lewis negative, as opposed to Lewis positive when FUT3 is active						
https://pubmed.ncbi.nlm.nih.go	https://pubmed.ncbi.nlm.nih.gov/33195368/						
https://onlinelibrary.wiley.com/c	loi/abs/10.1111/vox.13251						

RSID	Gene	Variant Expected		Variant Allele	Your Genotype
rs3894326*	FUT3	1356К А А		AA: 2/2	
Milk samples derived from mot	hers with inactive FUT3 due to g	enetic variations are referred to	as Lewis negative, as o	oposed to Lewis positive	e when FUT3 is active
https://pubmed.ncbi.nlm.nih.go	v/33195368/				

RSID	G	Gene		Variant		E	pected		Variant Allele	Your Gene	otyp e
rs778986	FUT3		C314T			G		A		GG: 2/2	
Milk samples derived from moth	ners with in <mark>act</mark>	ive FUT3 due to	genetic var	iation <mark>s</mark> are	e referred to	as Lewis	negative, a	as oppo	s <mark>ed to</mark> Lewis positiv	e whe <mark>n FUT</mark> 3 is a <mark>ct</mark>	ive
https://www.ncbi.nlm.nih.gov/pr	nc/article <mark>s/PM</mark>	C7658960/									
https://www.sciencedirect.com/	?ref=pdf <mark>_dow</mark> r	nload&fr <mark>=RR-1</mark> 18	&rr=71ef7bc	8fbe3356	b						
RSID	G	Gene		Variant		E	pected		Variant Allele	Your Gene	otyp e
rs812936	FUT3		T202C			А		G		AA: 2/2	
Milk samples derived from moth	n <mark>ers wit</mark> h inact	ive FUT3 due to	genetic var	iations are	e referred to	as Lewis	neg <mark>ative</mark> , a	as oppo	s <mark>ed to</mark> Lewis positiv	e when FUT3 is a <mark>c</mark> t	ive
https://pubmed.ncbi.nlm.nih.gov	<mark>//3319</mark> 5368/										

RSID	Gene	Variant	Expected	Variant Allele	Your Genotype		
rs3834458	intergenic C CT N/A						
This meta-analysis indicates that minor allele of rs3834458 (insertion) in FADS2 may result in lower activity of delta-6 desaturase leading to higher ALA and lower EPA, DPA							
and DHA in blood For minor	allele homozygotes, higher DHA	intake compensated for lower D)HA in women's plasma	phospholipids but not in	their milk.		
https://pubmed.ncbi.nlm.nih.gc	https://pubmed.ncbi.nlm.nih.gov/32093185/						
https://pubmed.ncbi.nlm.nih.gc	https://pubmed.ncbi.nlm.nih.gov/20335541/						

RSID	Gene	Variant	Expected	Variant Allele	Your Genotype				
rs2271714*	MFGE8		G	A	GG: 2/2				
Maternal genotype for the rs22	Maternal genotype for the rs2271714 variant within milk fat globule EGF and factor V/VIII domain containing gene (MFGE8) was associated with PIMS status (p = 0.009,								
adjusted p = 0.09, likelihood ra	adjusted p = 0.09, likelihood ratio = 9.33) and duration of exclusive breastfeeding (p = 0.009, adjusted p = 0.09, chi-square = 9.39).								
https://pubmed.ncbi.nlm.nih.go	v/34939829/								

RSID	Gene	Variant	Expected	Variant Allele	Your Genoty	vpe
rs1076991*	MTHFD1		С	Т	TT: 2/2	
rs1076991, rs2983733, rs2987	981, rs8003379, and rs1782459	1 SNPs in the methylene tetrah	ydrofolate dehydrogena	se 1 (MTHFD1) gene we	ere found to be associa	ated with
very high human milk choline c	concentrations in three subjects					
https://www.ncbi.nlm.nih.gov/p	mc/articles/PMC2904035/					
RSID	Gene	Variant	Expected	Variant Allele	Your Genoty	/pe
			G	A	GG: 2/2	
	MTHFD1 nat loss-of-function variants in fol nethyltransferase (PEMT)-PC syn		n cellular PC production	n, possibly via impaired fo		ng current
Overall, our findings indicate th	nat loss-of-function variants in fol nethyltransferase (PEMT)-PC sy		n cellular PC production	n, possibly via impaired fo		ng current
Overall, our findings indicate the phosphatidylethanolamine-N-mercommendations	nat loss-of-function variants in fol nethyltransferase (PEMT)-PC sy		n cellular PC production	n, possibly via impaired fo		ng current
Overall, our findings indicate the phosphatidylethanolamine-N-mercommendations	nat loss-of-function variants in fol nethyltransferase (PEMT)-PC sy		n cellular PC production	n, possibly via impaired fo		
Overall, our findings indicate the phosphatidylethanolamine-N-merecommendations https://pubmed.ncbi.nlm.nih.go	nat loss-of-function variants in fol nethyltransferase (PEMT)-PC sy v/27342765/	nthesis, and suggest that wome	n cellular PC production on with these risk genoty	n, possibly via impaired fo	oline intakes exceedin	
Overall, our findings indicate the phosphatidylethanolamine-N-merecommendations https://pubmed.ncbi.nlm.nih.goorganity/pubmed.ncbi.nlm.nlm.goorganity/pubmed.ncbi.nlm.nlm.goorganity/pubmed.ncbi.nlm.nlm.goorganity/pubmed.ncbi.nlm.goorganity/pubmed.ncbi.nlm.goorganity/pubmed.ncbi.nlm.goorganity/pubmed.ncbi.nlm.goorganity/pubmed.ncbi.nlm.goorganity/pubmed.ncbi.nlm.goorganit	nat loss-of-function variants in fol nethyltransferase (PEMT)-PC syn v/27342765/ Gene	Nthesis, and suggest that wome	n cellular PC production en with these risk genoty Expected G	n, possibly via impaired for rpes may benefit from ch Variant Allele	oline intakes exceedin Your Genoty AA: 2/2	
Overall, our findings indicate the phosphatidylethanolamine-N-merecommendations https://pubmed.ncbi.nlm.nih.goon RSID rs2236225 Overall, our findings indicate the	nat loss-of-function variants in fol nethyltransferase (PEMT)-PC sy v/27342765/ Gene MTHFD1	nthesis, and suggest that wome Variant Arg653GIn late-metabolizing enzymes strai	n cellular PC production en with these risk genoty Expected G n cellular PC production	A, possibly via impaired for pes may benefit from ch	Vour Genoty AA: 2/2 Date-dependent	/pe
Overall, our findings indicate the phosphatidylethanolamine-N-merecommendations https://pubmed.ncbi.nlm.nih.goon RSID rs2236225 Overall, our findings indicate the	aat loss-of-function variants in fol nethyltransferase (PEMT)-PC sy v/27342765/ Gene MTHFD1 nat loss-of-function variants in fol	nthesis, and suggest that wome Variant Arg653GIn late-metabolizing enzymes strai	n cellular PC production en with these risk genoty Expected G n cellular PC production	A, possibly via impaired for pes may benefit from ch	Vour Genoty AA: 2/2 Date-dependent	/pe

RSID	Gene	Variant	Expected	Variant Allele	Your Genotype			
rs2983733*	2983733* MTHFD1 A G GG: 2/2							
Overall, our findings indicate th	Overall, our findings indicate that loss-of-function variants in folate-metabolizing enzymes strain cellular PC production, possibly via impaired folate-dependent							
phosphatidylethanolamine-N-m	phosphatidylethanolamine-N-methyltransferase (PEMT)-PC synthesis, and suggest that women with these risk genotypes may benefit from choline intakes exceeding current							
recommendations	recommendations							
https://www.ncbi.nlm.nih.gov/p	mc/articles/PMC2904035/							

RSID	Gene	Variant	Expected	Variant Allele	Your Genotype
rs2987981*	MTHFD1	C421A	G	Т	AA: 0/2
Overall, our findings indicate th	hat loss-of-function variants in fo	late-metabolizing enzymes strai	n cellular PC production	, possibly via impaired fo	olate-dependent
phosphatidylethanolamine-N-m	nethyltransferase (PEMT)-PC sy	nthesis, and suggest that wome	n with these risk genoty	pes may benefit from ch	oline intakes exceeding curren
recommendations					
https://pubmed.ncbi.nlm.nih.go	v/27342765/				
RSID	Gene	Va ria nt	Expected	Variant Allele	Your Genotype
rs8003379*	MTHFD1		A	С	AA: 2/2
Overall, our findings indicate th	nat loss-of-function variants in fo	late-metab <mark>olizin</mark> g enz <mark>ymes</mark> strai	n cellular PC production	, possibly via impaired fo	olate-dependent
phosphatidylethanolamine-N-m	nethyltransferase (PEMT)-PC sy	nthesis, an <mark>d sug</mark> gest that wome	n with these ri <mark>sk ge</mark> notyj	pes <mark>may b</mark> enefit from ch	oline intakes exce <mark>eding</mark> curren
recommendations					
https://pubmed.ncbi.nl <mark>m.nih</mark> .go	v/2 <mark>7342</mark> 765/				
RSID	Gene	Variant	Expected	Variant Allele	Your Genotype
rs1801133*	MTHFR	C677T	G	A	GG: 2/2
The MTHFR 677C > T SNP wa	as associated with higher levels	of human milk unmetabolized fo	ic acid (UMFA)	•	
https://www.ncbi.nlm.nih.gov/p	mc/articles/PMC6669053/				

RSID	Gene	Variant	Expected	Variant Allele	Your Genotype			
rs1805087*	MTR	Asp919Gly	A	G	AA: 2/2			
Overall, our findings indicate th	Overall, our findings indicate that loss-of-function variants in folate-metabolizing enzymes strain cellular PC production, possibly via impaired folate-dependent							
phosphatidylethanolamine-N-m	ethyltransferase (PEMT)-PC sy	nthesis, and suggest that wome	n with these risk genotyp	es may benefit from ch	oline intakes exceeding current			
recommendations								
https://pubmed.ncbi.nlm.nih.go	v/27342765/							

RSID	Gene Variant Expected Variant Allele Your							
rs1801394	394 MTRR IIe22Met A G GA: 1/2							
Overall, our findings indicate th	Overall, our findings indicate that loss-of-function variants in folate-metabolizing enzymes strain cellular PC production, possibly via impaired folate-dependent							
phosphatidylethanolamine-N-m	ethyltransferase (PEMT)-PC sy	nthesis, and suggest that wome	n with these risk genotyp	bes may benefit from che	oline intakes exceeding current			
recommendations	recommendations							
https://pubmed.ncbi.nlm.nih.go	https://pubmed.ncbi.nlm.nih.gov/27342765/							

RSID	Gene	Variant	Expected	Variant Allele	Your Genotype				
rs53576	OXTR		G	A	AG: 1/2				
Women with the minor allele O	Women with the minor allele OXTR rs53576 reported 8.18-fold higher breast and nipple pain severity over time								
https://pubmed.ncbi.nlm.nih.gov/33303340/									

GG: 2/2 d in the promoter region of the PEMT gen susceptibility to organ dysfunction in -PC/CDP-PC in rs4646343 variant EMT-PC/CDP-PC was also observed
susceptibility to organ dysfunction in -PC/CDP-PC in rs4646343 variant
-PC/CDP-PC in rs4646343 variant
EMT-PC/CDP-PC was also observed
t Allele Your Genotype
TC: 1/2
1

activity may compromise PC-DHA supply to extra-hepatic tissue including vital reproductive organs during pregnancy and lactation. The PEMT rs7946 variant encodes a valine to methionine substitution at amino acid 175, which results in decreased enzymatic activity in vitro and may increase susceptibility to non-alcoholic fatty liver disease (NAFLD)

https://pubmed.ncbi.nlm.nih.gov/28134761/

RSID	Gene	Variant	Expected	Variant Allele	Your Genotype			
rs1355400106	0106 SLC30A2 S296L G A N/A							
Associated with transient neon	Associated with transient neonatal zinc deficiency. We identified two novel missense mutations in the SLC30A2/ZnT2 gene in a Japanese mother with low milk zinc							
concentrations (>90% reduction	n) whose infant developed sever	e zinc deficiency; a T to C trans	ition (c.454T>C) at exor	n 4, which substitutes a t	ryptophan residue with an			
arginine residue (W152R), and	arginine residue (W152R), and a C to T transition (c.887C>T) at exon 7, which substitutes a serine residue with a leucine residue (S296L).							
https://onlinelibrary.wiley.com/c	https://onlinelibrary.wiley.com/doi/full/10.1111/jcmm.13982							

RSID	Gene	Variant	Expected	Variant Allele	Your Genotype			
rs1477109267	SLC30A2	T312M	G	А	N/A			
Associated with transient r	ssociated with transient neonatal zinc deficiency.							
https://www.ncbi.nlm.nih.g	https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4919441/							
RSID	Gene	Variant	Expected	Variant Allele	Your Genotype			
rs1485358639	SLC30A2	663delC	С		N/A			
Associated with transient r gene not previously descri		esent a 4-month-old girl with TNZD	due to a new autosomal o	dominant mutation (663d	eIC) in the maternal SLC30A2			
https://pubmed.ncbi.nlm.ni	h.gov/2445 <mark>6035/</mark>							
RSID	Gene	Variant	Expected	Variant Allele	Your Genotype			
rs151175941	SLC30A2	G299W	V C	A	N/A			
Associated with transient r	eon <mark>atal zi</mark> nc deficiency.							
https://onlinelibrary.wiley.c	om/doi/full/10.1111/jcmm.1398	2						

RSID	Gene	Variant	Your Genotype				
rs185398527	27 SLC30A2 G87R C T N/A						
Associated with transient neonatal zinc deficiency. Heterozygous mutations of human ZnT2 (hZnT2), including H54R and G87R, in mothers result in low (>75% reduction)							
secretion of zinc into the breast milk, and infants fed on the milk develop transient neonatal zinc deficiency. Dominant negative mutation, low zinc breast milk.							
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3436150/							
https://pubmed.ncbi.nlm.nih.go	v/23741301/						

RSID	RSID Gene Variant Expected Variant Allele						
rs201084300 SLC30A2 G233D C T N/A							
Associated with transient neonatal zinc deficiency. Low zinc breast milk.							
https://onlinelibrary.wiley.com/doi/full/10.1111/jcmm.13982							

RSID	RSID Gene Variant Expected Variant Allele Your Genot							
rs35235055* SLC30A2 L23P A G AA: 2/2								
Associated with transient neonatal zinc deficiency. Two reported SNPs resulting in L23P and R340C substitutions in hZnT2 may compromise mammary cell functions such as								
zinc secretion into the milk by changing the subcellular localization of hZnT2, as suggested in the transfection studies.								
https://onlinelibrary.wiley.com/c	https://onlinelibrary.wiley.com/doi/full/10.1111/jcmm.13982							

RSID	Gene	Variant		Expected	Variant Allele	Your Genotype	
rs377192955	SLC30A2	E355Q		G	A	N/A	
Associated with transient neon	atal zinc de <mark>ficien</mark> cy.						
https://www.ncbi.nlm.nih.gov/p	mc/articles/PMC4919441/						
RSID	Gene	Variant		Expected	Variant Allele	Your Genotype	
rs587776926	SLC30A2	H54R		T	C	N/A	
Associated with transient neonatal zinc deficiency. Heterozygous mutations of human ZnT2 (hZnT2), including H54R and G87R, in mothers result in low (>75% reduction)							
secretion of zinc into the breas	t <mark>milk, a</mark> nd infants fed on the <mark>mil</mark>	k develop <mark>transi</mark> ent r	neonatal zin	c deficiency.			
https://www.ncbi.nlm.nih.gov/p	mc/articles/PMC3669329/						

RSID	Gene	Variant	Expected	Variant Allele	Your Genotype		
rs746722376	SLC30A2	E279K	С	Т	N/A		
Associated with transient neonatal zinc deficiency.							
https://onlinelibrary.wiley.com/c	https://onlinelibrary.wiley.com/doi/full/10.1111/jcmm.13982						

rs761084393 SLC30A2 V300L C A N/A Associated with transient neonatal zinc deficiency. <				Variant Allele	Your Genotype			
Associated with transient neonatal zinc deficiency.	761084393 SLC30A2	V300L	С	A	N/A			
	Associated with transient neonatal zinc deficiency.							
https://onlinelibrary.wiley.com/doi/full/10.1111/jcmm.13982	tps://onlinelibrary.wiley.com/doi/full/10.1111/jcmm.13982							

RSID	Gene	Variant	Expected	Variant Allele	Your Genotype	
rs765967769	SLC30A2	P245R	G	С	N/A	
Associated with transient neonatal zinc deficiency.						
https://onlinelibrary.wiley.com/o	doi/full/10.1111/jcmm.13982					

RSID	Gene		Variant		Expe	ected	<u>۱</u>	ariant Allele	Your	Genotype
rs767112739	SLC30A2	G233R			С		G		N/A	
Associated with transient neon	natal zinc deficiency.			•		1				
https://onlinelibrary.w <mark>iley.c</mark> om/	doi/full/10.1 <mark>111/jcmm.1398</mark> 2	2								
RSID	Gene		Variant		Expe	ected	1	ariant Allele	Your	Genotype
rs769222243	SLC30A2	H106Y			G		Α		N/A	
Associated with transient neon	natal zinc deficiency.									
https://onlinelibrary.wil <mark>ey.co</mark> m/	doi/f <mark>ull/10</mark> .1111/jcmm.13982	2								
RSID	Gene		Variant		Expe	ected	1	ariant Allele	Your	Genotype
rs772899336	SLC30A2	R165W			G		А		N/A	
Associated with transient neon	natal zinc deficiency.	-		•						
https://onlinelibrary.wiley.com/	doi/full/10.1111/jcmm.13982	2								

RSID	Gene	Variant	Expected	Variant Allele	Your Genotype	
rs774477332	SLC30A2	N214K	G	Т	N/A	
Associated with transient neonatal zinc deficiency.						
https://onlinelibrary.wiley.com/c	doi/full/10.1111/jcmm.13982					

RSID	Gene	Variant	Expected	Variant Allele	Your Genotype		
rs779896941	SLC30A2	G175W	С		N/A		
Associated with transient neonatal zinc deficiency.							
https://onlinelibrary.wiley.com/o	https://onlinelibrary.wiley.com/doi/full/10.1111/jcmm.13982						

RSID	RSID Gene Variant Expected Variant Allele Your Geno						
rs3199966* SLC4A1 Ser644Ala T G TT: 2/2							
Specifically, for both SNPs, variant (but not non-variant) individuals exhibited greater turnover of betaine ? methionine in the higher choline intake group as compared to the							
lower, suggesting that additional choline was used for methyl donation.							
https://pubmed.ncbi.nlm.nih.go	https://pubmed.ncbi.nlm.nih.gov/28134761/						

	RSID	Gene	Variant	Expected	Variant Allele	Your Genotype		
	rs7873937*	SLC4A1		G	C	CG: 1/2		
	altered the use of choline as a	methyl donor, altered the distribu	ution of di <mark>etary choline</mark> between ⁻	the CD <mark>P-choline a</mark> nd ph	osp <mark>hatidy</mark> lethanolamine	N-methyltransferase (PEMT)		
denovo pathway.								
	https://pubmed.ncbi.nlm.nih.go	v/28134761/						
	RSID	Gene	Variant	Expected	Variant Allele	Your Genotype		
	rs121909174	SLC5A5	T354P	A	С	N/A		
	Mother carrying homozygous T	354P mutation in the NIS transp	orter was reported to produce io	odine-deficient milk., Mot	her <mark>suppl</mark> ementation wit	th 50 mg potassiu <mark>m iod</mark> ide		
	tablet daily starting on the fifth	day postpartum to increase iodin	e concentration in human milk.					
	https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7284811/							

RSID	Gene	Variant	Expected	Variant Allele	Your Genotype		
rs121909175 SLCA5 C272X C A N/A							
This nonsense mutation produces a truncated NIS with undetectable I- transport activity when expressed into COS-7 cells. While the homozygous mutant NIS-272X causes							
congenital hypothyroidism, exp	congenital hypothyroidism, expression of one normal allele in the heterozygote (C272X) is sufficient to maintain active thyroidal I- uptake and function.						
https://pubmed.ncbi.nlm.nih.gov/9388506/							

RSID	Gene	Variant	Expected	Variant Allele	Your Genotype			
rs121909176	SLCA5	Q267E	С	G	N/A			
The Q267E mutation in the soc	The Q267E mutation in the sodium/iodide symporter (NIS) causes congenital iodide transport defect (ITD) by decreasing the NIS turnover number.							
https://pubmed.ncbi.nlm.nih.go	https://pubmed.ncbi.nlm.nih.gov/14734652/							

RSID	Gene	Variant	Expected	Variant Allele	Your Genotype		
rs121909177	SLCA5	Y531X	С	т	N/A		
Producing a stop codon as well as a downstream cryptic 3' splice acceptor site in exon 13, resulting in a 67 nucleotide deletion, frameshift, and premature stop (p.Tyr531X							
(Y531X)).	Y531X)).						
nttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC508654/							

RSID	Gene	Variant	Expected	Variant Allele	Your Genotype
rs121909178	SLCA5	G93R	G	С	N/A
Congenital I(-) transport defect	-causing NI <mark>S mu</mark> tant G93R				
https://www.ncbi.nlm.nih.gov/pi	mc/article <mark>s/PM</mark> C5739519/				
RSID	Gene	Variant	Expected	Variant Allele	Your Genotype
rs121909179	SLCA5	G543E	G	A	N/A
Molecular analysis of a congen	nital iodide transport defect: G543	BE impairs maturation and traffic	king of the Na+/I- symp	orter <mark>. Here</mark> , we show tha	at in contrast to th <mark>ese m</mark> utants,
G543E NIS matures only partia	ally and is retained intracellularly;	thus, it is not targeted properly	to the cell sur <mark>face,</mark> appa	arent <mark>ly bec</mark> ause of faulty	folding.
https://pubmed.ncbi.nlm.nih.go	v/15976004/				

RSID	Gene	Variant	Expected	Variant Allele	Your Genotype		
rs121909180	SLCA5	G395R	G		N/A		
Thyroid dyshormonogenesis I (Thyroid dyshormonogenesis I (also known as iodide transport defect). Active iodide uptake in the thyroid is mediated by the Na(+)/I(-) symporter (NIS), a key plasma						
membrane glycoprotein. Several NIS mutations have been shown to cause I(-) transport defect, a condition that, if untreated, can lead to congenital hypothyroidism and,							
ultimately, cretinism. The study	Itimately, cretinism. The study of I(-) transport defect-causing NIS mutations provides valuable insights into the structure-function and mechanistic properties of NIS. Here we						
report the thorough analysis of	eport the thorough analysis of the G395R NIS mutation. We observed no I(-) uptake activity at saturating or even supersaturating external I(-) concentrations in COS-7 cells						
transiently transfected with G395R NIS cDNA, even though we demonstrated normal expression of G395R NIS and proper targeting to the plasma membrane.							
https://pubmed.ncbi.nlm.nih.gov/12145342/							

RSID	Gene	Variant	Expected	Variant Allele	Your Genotype	
rs200597118	SLCA5	R124H	G	А	N/A	
Absence of NIS activity in R124H NIS-expressing cells. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3730242/						

