Considerations for Dining in Space

Microgravity affects the way fluids behave, so you can’t pour or drink easily in space.

Space environments alter human physiology, dulling astronauts’ sense of taste.

Food cannot produce crumbs, which can stray into air filtration systems and damage costly equipment.

Standard kitchen equipment used to store and heat food (like ovens & freezers) aren’t available due to storage and power (electricity) constraints.

Because it is so costly to ship cargo into space, foods must have a very long shelf-life.

Weightlessness affects the ability to combine ingredients, so even salting a meal is impossible!

There isn’t much room for storage on-board the ISS, so meals are often vacuum-sealed, freeze-dried, and flat-packed to take up less space.

Processes that require microbial activity, like fermentation, are impossible on the ISS because the microorganisms required aren’t permitted.

Microgravity affects the way fluids behave, so you can’t pour or drink easily in space.

Space environments alter human physiology, dulling astronauts’ sense of taste.

Food cannot produce crumbs, which can stray into air filtration systems and damage costly equipment.

Standard kitchen equipment used to store and heat food (like ovens & freezers) aren’t available due to storage and power (electricity) constraints.

Because it is so costly to ship cargo into space, foods must have a very long shelf-life.

Weightlessness affects the ability to combine ingredients, so even salting a meal is impossible!

There isn’t much room for storage on-board the ISS, so meals are often vacuum-sealed, freeze-dried, and flat-packed to take up less space.

Processes that require microbial activity, like fermentation, are impossible on the ISS because the microorganisms required aren’t permitted.