



FEMA P-58 for Seismic Risk Assessment

Aaron Malatesta, PE

Haselton Baker Research Group Jared DeBock, Ed Almeter, Dave Welch, **Curt Haselton** 



#### **Presentation Outline**



Introduction to Haselton Baker Risk Group, LLC



Background on Applications for Seismic Risk Assessment



Seismic Risk Assessment Methodologies



Comparison Study



### Haselton Baker Risk Group, LLC



















Creators of SP3-RiskModel

# SP3 Team Where Research Meets Practice

- Research & Development with the Applied Technology Council (ATC)
- Advocates for Seismic Resilience in the Built Environment (BSSC, ASCE 7, and ASCE 41)
- Creators of Software Solutions for Seismic Risk Assessment
- Professional Consulting to Support Advanced Seismic Research Subjects



#### Applications for Seismic Risk Assessment

#### Design & Retrofit

New Construction and Seismic Retrofit Resilient Design

#### Commercial Real Estate Due Diligence (Buildings & Portfolios)

Seismic Risk Assessment and Property Resilience Assessment

#### **Community Resilience Planning**

FEMA Funding Grants (Benefit-Cost Analysis)

#### Insurance

Underwriting and Reinsurance



#### General Seismic Risk Assessment Metrics

#### FIGURE 1. BUILDING DAMAGEABILITY



**FIGURE 2. RECOVERY TIME** 



FIGURE 3. COMPONENT GROUP LOSSES



FIGURE 4. ANNUALIZED LOSSES



FIGURE 5. PORTFOLIO(REGIONAL) ANALYSIS



**FIGURE 6. NET PRESENT VALUE** 





# Evolution of Seismic Risk Assessment Methodology Leading to the Development of the FEMA P-58 Methodology

ATC-13 Method: Developed based on judgement of group of experts, based on earthquake experience up to 1985.

Thiel-Zsutty Method: Developed based on the ATC-13 Method and also a method for building classes and is not inherently building-specific.

HAZUS Method: Developed based on the ATC-13 Method and based a mix of historical data, previous research, and engineering judgment.





#### The FEMA P-58 Methodology

**FEMA P-58 Method**: FEMA P-58 was a  $\sim$ 15-year project, \$16M, and released in 2012 (updated in 2018) and provides a standardized method for loss prediction based on building-specific modeling using comprehensive database of structural and non-structural components.





**ATC-138 (Functional Recovery) Method:** The functional recovery methodology is based on the general methodology and recommended procedures described in the FEMA P-58; the methodology can be used to assess seismic performance in terms of the probable functional recovery time of individual buildings subjected to a damaging earthquake.



#### **Primary Inputs**

location, construction year, structural system, occupancy, etc.

#### **Building Layout**

building geometric layout and square footage, etc.

#### Building Design & Behavior Modifiers

Level of detailing, design requirements, irregularities, deficiency checklist



**Risk Analysis Results** Safety, Damage & Recovery Fatality versus Intensity Injury versus Intensity - 

- Existing: 90th Existing: Mean - • - Retrofit: 90th - - Retrofit: 90th Collapse 0.4 0.5 - Full Recovery 1.0

Aggregate

Consequences

**Monte-Carlo** 

**Simulation** 

Recovery

**Time Options** 

Impedance

and

Functional Recovery

**Options** 



#### **Recovery Time Modeling**





#### ATC-138 - Reoccupancy and Functional Recovery Assessment





#### **BUILDING RECOVERY – IMPEDING TIME**



#### **BUILDING RECOVERY - REPAIR TIME**



#### **Recovery Time Modeling**

- Recovery Time includes both impedance time and repair time
- Fault-tree logic that provides sequencing of impedance and repairs
- Building-specific customization for functional recovery requirements



#### 18-story PNMF frame in Los Angeles built in 1973









### 18-story PNMF frame in Los Angeles built in 1973







#### PNMF – Thiel Zsutty Methodology



#### PML (SEL) = 0.554 (b m s) a 0.630

a = Peak Ground Acceleration (PGA)

s = Site Soil Coefficient

m = Spectral Modification Parameter

b = Building Vulnerability Parameter (Based on Table of structural system classes)

 $SEL = 0.21 = 0.554 (0.41*1.0*1.4) 0.51^{0.63}$ 

Good back of the napkin check to do!!!



#### PNMF – Damageability at 475-Year Return Period







### PNMF – Damage Vulnerability







#### PNMF – Recovery Time at 475-Year Return Period







#### PNMF – Recovery Time Vulnerability







#### Seismic Retrofit for 18-story PNMF frame in Los Angeles built in 1973







Building Period, T

Damper Base Shear Relatively Small in Comparison with Stiff Systems



Seismic Retrofit of PNMF – Damageability at 475-Year Return Period







### Seismic Retrofit of PNMF – Damage Vulnerability







#### Seismic Retrofit of PNMF – Recovery Time at 475-Year Return Period







#### Seismic Retrofit of PNMF – Recovery Time Vulnerability







| Bin Name                         | Building Type | Occupancy Type         |
|----------------------------------|---------------|------------------------|
| Wood Light Frame                 | W2a           | Multi-Unit Residential |
| Wood Light Frame - SS Retrofit   | W2a           | Multi-Unit Residential |
| Tilt-Up                          | PC1a          | Warehouse              |
| Tilt-Up - Anchorage Retrofit     | PC1a          | Warehouse              |
| RC Shear Wall                    | C2a           | Commercial             |
| RC Shear Wall w/ RC Frame        | C2b           | Commercial             |
| RC Shear Wall w/ Coupling Beams  | C2c           | Commercial             |
| RC Shear Wall w/ S Frame         | S4a           | Commercial             |
| RC Moment Frame                  | C1b           | Commercial             |
| NDCMF - FRP Retrofit             | C1b           | Commercial             |
| BRBF                             | S2e           | Commercial             |
| SCBF                             | S2a           | Commercial             |
| SMF - Post 1994                  | S1a           | Commercial             |
| PNMF - Pre 1995                  | S1b           | Commercial             |
| PNMF - Pre 1995 - Conn. Retrofit | S1b           | Commercial             |

### Seismic Risk Assessment Methodology Comparison

- Various building structural systems are compared using Thiel Zsutty and FEMA P-58 Method
- Highlight key differences

Pre-Northridge Moment Frames (PNMF)

- High, Moderate, and Low Seismic –Site Class D and B/C
- Design Code Years: 1968, 1973, 1985
- Number of Stories: 2, 4, 8, 12, 20, 40
- Occupancy: Commercial
- Aspect Ratio: 1, 2

**CHICAGO:** NOVEMBER 1-4, 2022

#### **Pre-Northridge Moment Frames**

Vertical columns of dots are building classes as at a specific location.

The "spread" of answers from FEMA P-58 is due to the building-specific characteristics that are captured, such as number of stories, building strength, and occupancy type.





TZ SEL (No Losses from Collapse & Residual Drift)



#### Zoomed in on Site Class D and Segmented by Number of Stories

Demonstrates building-specific characteristics of story height, also correlates to building strength.







#### **Building-Specific Characteristics**

• In this graph you can visualize the trend in which structural strength influences structural loss. Sa(T1)/Vult can be utilized as an approximation of global ductility demand.





**CHICAGO:** NOVEMBER 1-4, 2022

#### Pre-Northridge Moment Frames

Significant contributions to damage losses in high-seismic zones from building collapse and residual drift.





TZ SEL (No Losses from Collapse & Residual Drift)



### Collapse and Residual Drift in Seismic Risk Assessment Methodology

Inclusion of building collapse and residual drifts may significantly impact building vulnerability in high-seismic zones.





#### Tilt-Up Warehouses in Different Eras





#### (b) Roof framing plan of tilt-up building



(c) Typical cross-section



#### Tilt-Up Warehouses in Different Eras

Changes in wall anchorage requirements in different eras.

ATC 13 not capturing these wall anchorage requirements in building classes.

- High, Moderate, and Low Seismic –Site Class D and B/C
- Number of Stories: 1
- Occupancy: Warehouse
- Aspect Ratio: 1, 2, 3, 4, & 5





**CHICAGO:** NOVEMBER 1-4, 2022

#### Tilt-Up Buildings

Vertical columns of dots are building classes as at a specific location.

The "spread" of answers from FEMA P-58 is due to the building-specific characteristics that are captured, such as number of stories, building strength, and occupancy type.





ATC 13 SEL (No Losses from Collapse & Residual Drift)



#### Conclusion

- Historic background on seismic risk assessment methodology and FEMA P-58
- FEMA P-58 method gives similar results to building-classification-based methods in high-seismic zones on average, but lower loss results on average in lower seismic zones
- The FEMA P-58 method results vary more between buildings, since it has the ability to quantify the effects of building-specific (and site-specific) features to provide a more detailed risk assessment for the individual building (in contrast to giving results for a building class and adding modifiers)
- FEMA P-58 also provides additional detailed building-specific risk information such as what specific components are expected to be damaged and contribute most to losses, building repair time estimates, etc.
- More to come with Building Code development for Functional Recovery!



## Thank You!

Aaron Malatesta, PE aaron@hbrisk.com