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Part 1: Background

▪ Benefits of supplemental damping

▪ Barriers for damper use in practice

Part 2: Taylor Damped Moment Frame (TDMF™) System Description

Part 3: Overview of Design Procedure

Part 4: AC494 / FEMA P-695 System Validation

Part 5: TDMF Implementation in SP3

▪ Structural properties

▪ Response prediction engine

▪ Brief comparison to undamped steel SMF (8-story in LA)

Part 6: Q & A

Overview and Outline
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Part 1: Background

Current Practice for Damper Use

Retrofit 
Applications

New 
Construction

Base Isolation with 
Supplemental 
Damping

TDMF Applications
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Part 1: Background

Damper Fundamentals

Damper Output Force, F

 F = CVα

C = damping constant

V = velocity 

α = velocity exponent
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Part 1: Background

Key Advantages of Dampers

• Reduce floor drifts and accelerations

• Dampers don’t add stiffness to the structure

• Damper bays don’t have to stack vertically

• Dampers reduce base shear and foundation loads
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Part 1: Background

Current Practice – ASCE 7 Ch. 18

• Nonlinear Response History Analysis 

(practically) required

• Peer Review

• Open-Ended and Interwoven design 

process between Moment Frame and 

Damper design

• No guidance on initial damper property 

selection (C & alpha)

• Based on Modal Response Spectrum 

Analysis

• Removes Peer Review Requirements

• Decouples the design procedure for the 

Moment Frame from the Dampers

• Prescriptive approach to determining 

damper properties

– Alpha is fixed at 0.4

– Damping Ratio is set to 25%

– C values are determined in a simplified way, 

based on MRSA results

Taylor Damped Moment FrameTM
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System Description and Design Procedure
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System Description: General

Damper Frame (DF) 

• Taylor Fluid Viscous Dampers

• Gusset-to-Gusset Assembly

• Supporting Beams & Columns

• Reduces seismic response through 

energy dissipation

Moment Frame (MF) 

• Steel Special Moment Frame 

(SMF) in alignment with ASCE 7, 

AISC 341, 358 & 360.

• Serves as main lateral force 

resisting system



10

© HB Risk Group

System Description: Configurations

Three main configuration types (elevation)



11

© HB Risk Group

System Description: Configurations

Three main configuration types (plan)

Damper Frame (DF)

Moment Frame (MF)

Type I Type II Type III

Damper 
Frame (DF)

Moment Frame (MF)

Damper 
Frame (DF)

Moment Frame (MF)
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Damper Configurations

• Common DF configurations (others possible)
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• Building configuration requirements
– Height Limit: 300 ft.

– Diaphragms not flexible according to ASCE 

7 classification

– At least two dampers in each principal 

direction at each story above the base, 

configured to resist torsion

– Extreme Torsional Irregularity (TIR > 1.4) 

not allowed

• Moment Frame: 
– Steel Special Moment Frame, in 

accordance with AISC

• Proprietary connections are allowed!

Scope

• Dampers: Taylor Devices fluid 

viscous dampers
– 25% Damping at DE intensity

– Damper Force-velocity relationship: 

F = CVα

• C = Damping Constant

• V = Velocity

• α = Velocity Exponent = 0.4



14

© HB Risk Group

Design Procedure: Objectives and Design Philosophy

• Objective → Standardized design method that:
– Is relatively straightforward to execute

– Does not require a nonlinear model

– Does not require iteration (beyond the typical MF design process)

– Does not require peer review

– Produces building designs that consistently meet ASCE 7 collapse performance objectives

• And resilient!

• Moment Frames
– Follow ASCE 7 Chapter 12 linear design procedures as closely as possible

– Decoupled from the damping system design, to avoid iteration

• Damping System
– Highly standardized (simple)

– 25% damping at DE intensity
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Moment Frame (MF) Design

• Steel Design Req’s: No changes
– AISC 341, 358, and 360

• Loading: ASCE 7 MRSA with the 

following modifications:
– Cd = 4.5, ρ = 1.0

– Reduce base shear by 25% (strength)

– Section 12.8.7 Stability Coefficient: θmax = 0.25

– New min base shear equation for checking drifts:

• 𝐶𝑠,𝑑 = 0.35𝑆𝐷1/(𝑅/𝐼𝑒) ≤ 0.5𝑆1/(𝑅/𝐼𝑒)

• Note: MF design is decoupled from 

the DF design

Ch. 11
Ch. 12
Ch. 13
Ch. 18
Ch. 20
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• Damper Frame (DF) is designed based on 

Moment Frame (MF) response 

– MRSA drift profile

– Story stiffness from ELF loading

• Damper Properties

– 25% damping at DE intensity (prescriptive)

– Amplify stroke capacity to prevent exhausting the 

stroke in an MCE event

• User overstrength damper forces for 

capacity-based design of beams, columns, 

connections, etc.

– Design process nearly identical to BRB design

• Highly prescriptive and typically no 

iteration

– Can be done in minutes with an Excel 

spreadsheet

Damper Frame (DF) Design
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Load Combinations: Explained

• Portions of foundations that do not require overstrength
– 𝐸ℎ = 𝑚𝑎𝑥 𝐸, 𝐸𝑇𝐷, 𝐸 ± 0.7𝐸𝑇𝐷

• Shared elements and transfer elements: 
– 𝐸ℎ = 𝑚𝑎𝑥 𝐸, 𝜴𝑭𝐸𝑇𝐷, 𝐸 ± 0.7𝜴𝑭𝐸𝑇𝐷

• Shared Elements for which ASCE 7 requires overstrength
– 𝐸𝑚ℎ = 𝑚𝑎𝑥 𝜴𝟎𝐸, 𝜴𝑭𝐸𝑇𝐷, 𝜴𝟎𝐸 ± 𝜴𝑭0.7𝐸𝑇𝐷

Shared Column
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Load Combinations: Actual Notation

• Portions of foundations that do not require overstrength
– 𝐸ℎ = 𝑚𝑎𝑥 𝑄𝑀𝐷, 𝑄𝑇𝐷,  𝑄𝑀𝐷 ±0.7𝑄𝑇𝐷  

• Shared elements and transfer elements: 
– 𝐸ℎ = 𝑚𝑎𝑥 𝑄𝑀𝐷, Ω𝐹𝑄𝑇𝐷,  𝑄𝑀𝐷 ±0.7Ω𝐹𝑄𝑇𝐷

• Shared Elements for which ASCE 7 requires overstrength
– 𝐸𝑚ℎ = 𝑚𝑎𝑥 Ω0𝑄𝑀𝐷, Ω𝐹𝑄𝑇𝐷, Ω0𝑄𝑀𝐷 ± Ω𝐹0.7𝑄𝑇𝐷

Shared Column
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3D Effects

• Orthogonal load combination (e.g. biaxial columns)
– Damper forces use 100% in primary direction and 60% in secondary direction

– Good practice to do the same for MF members as well

• Torsion: Damper induced torsion is handled by modifying the accidental 

torsion equation in ASCE 7, Ch. 12

– Mta,TDMF = 0.05𝐿 ∗ 𝑉𝑀𝐷,𝑖 + 0.7 ∗ 𝑒𝑇𝐷,𝑖 ∗ 𝑉𝑇𝐷,𝑖 ∗ 1 −
𝑟𝑇𝐷,𝑖

𝐿

2
 

ASCE 7 Accidental 
Torsion

Damping induced 
torsion

Factor for DF torsional 
resistance (0.25 to 1.0)
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Part 4: AC494 / FEMA P-695 System Validation

• Summary: “Show through 

nonlinear time history 

analysis of a suite of 

archetype designs that the 

design procedure produces 

buildings that satisfy ASCE 7 

collapse resistance targets”
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Part 4: AC494 / FEMA P-695 System Validation

• Summary: “Show through 

nonlinear time history 

analysis of a suite of 

archetype designs that the 

design procedure produces 

buildings that satisfy ASCE 7 

collapse resistance targets”
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Part 4: AC494 / FEMA P-695 System Validation

• Approximately 100 designs 

• Typically 180 ft by 120 ft in plan

• 2- to 20-story

• Typical story heights are 14 ft with 1st story heights of 16 ft or 22 ft

• Mostly perimeter frames, some space frames

Archetype Design Space
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Part 4: AC494 / FEMA P-695 System Validation

Archetype Design Space

• Bay lengths: 25 ft, 30 ft, 35 ft

• Moment Connections: 

- Reduced Beam Section (RBS) with doubler plates

- RBS without doubler plates

- Welded Unreinforced Flange – Welded Web (WUF – W)

- SidePlate ® Connections

• Damper Configurations: 

- Chevron

- Diagonal

- 2-Story X

- Modified Chevron 

with Horizontal Dampers (MCHD)
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Part 4: AC494 / FEMA P-695 System Validation

Archetype Design Space

• Seismic Design Category (using P-695 classification):

- SDC Dmax (SDS = 1.0, SD1 = 0.6) (required by AC494)

- SDC Dmin (SDS = 0.5, SD1 = 0.2) (required by AC494)

- SDC E (SDS = 1.5, SD1 = 1.0) (not required by AC494)

• Risk Category: 

- RC II (required by AC494)

- RC IV (not required by AC494)
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Part 4: AC494 / FEMA P-695 System Validation

Nonlinear Modeling (just a glimpse)

• Lumped plasticity models (OpenSees):

- Modeling assumptions are in line with the ATC-114/NIST Guidelines (NIST, 2017)

- MF behavior based on experimental testing (Lignos et al. 2019; Skiadopoulos et al. 2021)

- Viscous damper assemblies capture theoretical dissipation and stiffness characteristics
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Part 4: AC494 / FEMA P-695 System Validation

P-695: Incremental Dynamic Analysis and Acceptance Criteria

• Archetypes assembled into performance groups (i.e., number of stories and SDC)

• Acceptance Criteria:

– < 10% probability of “Collapse” at MCE for average of performance group

– < 20% probability of “Collapse” at MCE for individual archetypes within performance group

“Collapse” is defined as the 

intensity that causes the first 

provided damper stroke to be 

exceeded

SCT = Median Collapse Intensity

SMT = MCE intensity

SCT/SMT = Collapse Margin Ratio (CMR)
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Part 4: AC494 / FEMA P-695 System Validation

P-695: Incremental Dynamic Analysis and Acceptance Criteria

• Ground motion suite considers 22 horizontal 

accelerogram pairs (P-695 far-field set)

• Stroke exceedance considered as collapse:

– Non-simulated collapse mode per P-695

– Conservative assumption

– Avoids calibrating models to capture “bottoming 

out” behavior

– Allowed the use of the stroke amplification 

factor to be adjusted to achieve target 

performance within design procedure

• Classic collapse mechanisms (e.g., global 

sidesway) capture, though none controlled

Red line considers Spectral Shape Factor
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Part 4: AC494 / FEMA P-695 System Validation

Results Summary

• TDMF designs meet the AC494 / FEMA P-695 collapse performance requirements

SDC Dmax (SDS = 1.0, SD1 = 0.6) 

(required by AC494)

70 archetypes

SDC E (SDS = 1.5, SD1 = 1.0) 

(not required by AC494)

22 archetypes
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Part 5: TDMF Implementation in SP3

• Large data set from AC494 study (~100 archetypes) used to assist in structural 

property trends:

– Properly calibrating design model periods (before including nonstructural and gravity system 

contributions)

– Obtaining realistic strength to weight ratios for the TDMF system

• TDMF design procedure used to modify automated MF design procedure in SP3

– Revised base shear requirements

– Cd = 4.5 (compared to 5.5 for SMF)

• TDMF procedure used for global and local damping system properties:

– Required story level damping coefficients

– Individual damper properties estimated based on configuration and structural properties

– Appropriate damper fragility selection

• SP3 updated to include specific user-inputs:

– Damper configuration (e.g., chevron, diagonal, modified chevron with horizontal dampers)

– Damper frame bay length

Structural Properties
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Part 5: TDMF Implementation in SP3

• Subset of AC494 archetypes reanalyzed without supplemental damping to compare 

response reduction with other code-based reduction factors (i.e., ASCE 7 Ch. 18)

• Effective damping ratios consider both frequency and intensity dependencies:

– 25% supplemental damping assumed at the DE level and at the design model T1

– Nonlinear viscous dampers can provide effective damping ratios above and below the target 

DE value depending on the intensity level

– Changes in fundamental period when considering nonstructural and gravity system effects 

results in slight changes in effective damping ratio (compared to bare design model period)

Structural Response Prediction Engine
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Part 5: TDMF Implementation in SP3

• 8-story steel frame buildings located in Los Angeles (TDMF and SMF variants) 

• High seismicity site: SDS = 1.44g, SD1 = 1.23g

• 100 ft by 100 ft in plan

• 15 ft first story height, 14 ft typical story height

• Office occupancy assumed

• All nonstructural inventory the same between both system types

Comparison to Undamped Steel SMF 
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Part 5: TDMF Implementation in SP3

• Reduced strength requirements results in TDMF being more flexible with less ultimate 

strength than an equivalent steel SMF

Comparison to Undamped Steel SMF: Structural Properties 

Structural System T1,design [s] T1,final [s] Vult/W

TDMF 2.30 1.67 0.181

SMF 1.98 1.50 0.226
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Part 5: TDMF Implementation in SP3

• PFA responses are significantly lower for TDMF in the upper stories

• TDMF and SMF are similar in lower stories at high intensity to capture nonlinear 

demand concentration 

Comparison to Undamped Steel SMF: PFA Responses
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Part 5: TDMF Implementation in SP3

• Story drift response is consistently lower for TDMF compared to SMF

• Peak story drift ratio is reduced by ~30% comparing TDMF to SMF

Comparison to Undamped Steel SMF: Story Drift Responses
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Part 5: TDMF Implementation in SP3

• TDMF versus SMF shows significant reduction in mean loss at DE and MCE

• Similar trends are shown for the probability of receiving a red tag

Comparison to Undamped Steel SMF: Performance

DE MCE

DE MCE
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Part 5: TDMF Implementation in SP3

• Onset of non-zero recovery times occurs at larger intensity for TDMF vs SMF

• Largest differences are at moderate seismic intensities 

Comparison to Undamped Steel SMF: Recovery

DE MCE

DE MCE
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Summary 

• The TDMF™ system removes some common barriers for designing steel moment frames with 

supplemental damping

• The TDMF™ design procedure:

– Uses ASCE 7 Chapter 12 design methods

– Decouples the design of the moment frame and the damper frame

– Does not mandate peer review

• The system has been validated using AC494 and FEMA P-695

• The TDMF™ system has been added to SP3

• Including supplemental damping via the TDMF™ system makes steel moment frames more 

resilient
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• Project Directors
– D. Jared DeBock, PhD, PE

– Jim Harris, PhD, PE, SE, NAE

• Project Working group
– David P. Welch, PhD

– D. Jared DeBock, PhD, PE

– Nathan Canney, PhD, PE

• Project Advisor
– Curt B. Haselton, PhD, PE

• Moment Frame Design Consultants
– Tom Sabol, PhD, PE, SE, RA

– Henry Burton, PhD, SE

– Xingquan Guan, PhD

Project Participants

• Damping Design Consultant
– Aaron Malatesta, PE

• Taylor Devices Management Team
– Nathan Canney, PhD, PE – Director of Structural 

Engineering

– Stu Buckley – VP of Business Development & 
Strategy

– Konrad Eriksen – Structural Products Sales 
Director

– Alan Klembczyk - President

• Peer Reviewers 
– Jim Malley, PE, SE, NAE

– Michael Constantinou, PhD

• ICC-ES representatives
– Manuel Chan, P.E., S.E.

– Melissa Sanchez, S.E., LEED AP
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