Erwinia amylovora survival in cankers: What do we know?

Ricardo Delgado Santander

Fatemeh Khodadadi, Christopher L. Meredith, Željko Rađenović, Jon Clements, Srđan G. Aćimović

Canker Development

Cankers and Fire Blight Outbreaks

- **Reservoirs** of the pathogen
- Enable winter survival
- *Ea* **inoculum sources** in spring

- → Does *Ea* survive in all the cankers?
- → Which factors contribute to Ea survival?
- → Do *Ea* populations keep constant over time?

- Irrigated vs non-irrigated apple trees
- Non-irrigated pear and Asian pear trees
- Shoot inoculation in June to obtain cankers
- Cankers harvested in Jul, Oct, Jan, Apr
- Two experimental repeats:

→ 2016: Extreme Drought Conditions

→ 2017/2018: Colder/Wetter weather

Host species	Apple (<i>Malus pumila</i> Mill.)	Pear (<i>Pyrus communis</i> L.)	Asian pear (<i>Pyrus pyrifolia</i> Nakai)
Host cultivar	'Cortland'	'Bartlett'	'Hosui'
(resistance to Fire	'Cameo'	'Bosc'	'Shinko'
blight)	'Honeycrisp'		'Yoinashi'

Logistic Regression Analysis

- \rightarrow Variables increasing the chances of detecting $E\alpha$ in cankers
 - Year period (July > October > April > January)
 - Wetter & Cold weather > Drought
 - Irrigation > non-irrigation
 - Host species/cultivar

Apple

'Cortland'

'Cameo'

'Honeycrisp'

Fire Blight Fruit School

Logistic regression Analysis

- \rightarrow Variables increasing the chances of detecting $E\alpha$ in cankers
 - Year period (July > October > April > January)
 - Wetter/Colder weather > Drought
 - Irrigation > non-irrigation
 - Host species/cultivar
 - **Host resistance: More resistant > More susceptible**

2016

ES: Extremely Susceptible **HS**: Highly Susceptible

S: Susceptible

MS: Moderately Susceptible

Logistic regression Analysis

- \rightarrow Variables increasing the chances of detecting $E\alpha$ in cankers
 - Year period (July > October > April > January)
 - Wetter/Colder weather > Drought
 - Irrigation > non-irrigation
 - Host species/cultivar
 - Host resistance: More resistant > More susceptible

2016

- E. amylovora overwinters better in cankers of more resistant hosts
- The populations of the pathogen tend to be higher in more susceptible hosts
- These results can be explained by:
 - \rightarrow Ea growth inhibition by the host
 - → Speed of symptom progression
 - → Differential effect of Temp. on starving and feasting cells

Erwinia amylovora physiology

E. amylovora is a NON-OBLIGATE pathogen → ADAPTATIONS

Saprophyte → Able to feed on nutrients obtained from the host
 → No special nutritional requirements → Grows on a wide range of organic materials

• Mechanisms to cope with starvation → Survival in the environment

Erwinia amylovora survival

The effects of temperature vary depending on $E\alpha$ nutritional conditions

Nutrient-Rich environments

(Host's tissues, culture media)

- \rightarrow Range of temperatures allowing *Ea* growth (appr. 39.2 F 96.8 F)
- → Optimal growth temperature (appr. 82.4 F)

Nutrient-Limiting environments

(Dead tissues, non-host environments)

- → Survival under starvation conditions improved at 39.2 F 68 F.
- → Higher death rates at ≥ 82.4 F and < 39.2 F</p>

Erwinia amylovora survival

Resistant Host

- 1. Available healthy tissue → Host slows down infection
- 2. Infection progresses through Summer Fall, while environmental conditions are favorable
- 3. In winter, there's still healthy plant material available, and $E\alpha$ cells get trapped within healthy tissues.
- 4. In Spring, with the host's renewed growth, $E\alpha$ cells continue infecting the available tissues.

Highly Susceptible Host

- 1. Available healthy tissue $\rightarrow Ea$ spreads quickly
- 2. Infection progresses through Summer Fall, while environmental conditions are favorable. Compared to resistant hosts, many $E\alpha$ cells stay within necrosed tissues
- 3. In winter \rightarrow Low/freezing temperatures kill $E\alpha$ cells
- 4. In Spring \rightarrow No detection of Ea in cankers

TYPE Original Research
PUBLISHED 18 October 2022
DOI 10.3389/fmicb.2022.1009364

OPEN ACCESS

EDITED BY

Marco Scortichini, Council for Agricultural and Economics Research (CREA), Italy

REVIEWED BY

Andreas Peil,
Julius Kühn Institute (JKI), Germany
Stefano Piazza,
Fondazione Edmund Mach,
Italy
Jeffrey K. Schachterle,
USDA-ARS, United States

*CORRESPONDENCE

Srđan G. Aćimović acimovic@vt.edu

SPECIALTY SECTION

This article was submitted to Microbe and Virus Interactions with Plants, a section of the journal Frontiers in Microbiology

RECEIVED 01 August 2022 ACCEPTED 21 September 2022 PUBLISHED 18 October 2022

Fire blight resistance, irrigation and conducive wet weather improve *Erwinia amylovora* winter survival in cankers

Ricardo D. Santander^{1,2}, Fatemeh Khodadadi³, Christopher L. Meredith², Željko Rađenović², Jon Clements⁴ and Srđan G. Aćimović³*

¹Irrigated Agriculture Research and Extension Center, College of Agricultural, Human, and Natural Resource Sciences, Washington State University, Prosser, WA, United States, ²Hudson Valley Research Laboratory, School of Integrative Plant Science, Plant Pathology and Plant-Microbe Biology Section, Cornell University, Highland, NY, United States, ³Alson H. Smith Jr. Agricultural Research and Extension Center, School of Plant and Environmental Sciences, Virginia Polytechnic Institute and State University, Winchester, VA, United States, ⁴Center for Agriculture, Food, and the Environment, University of Massachusetts Amherst, UMass Cold Spring Orchard, Belchertown, MA, United States

Thanks for your Attention